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Abstract

Chemical dynamics, in principle, should be understood by solving the time-dependent

Schrödinger equation for a molecular system, describing motion of the nuclei and elec-

trons. However, the computational e�orts to solve this partial second-order di�eren-

tial equation scales exponentially with the system size, which prevents us from getting

exact numerical solutions for systems larger than 4-5 atoms. Thus, approximations

simplifying the picture are necessary. The so-called Born-Oppenheimer approxima-

tion, separating motion of the electrons and nuclei is the central one: solution to

the electronic Schrödinger equation defines the potential energy surface on which the

nuclear motion unfolds, and there are standard quantum chemistry software packages

for solving the electronic Schrödinger equation. For the nuclear Schrödinger equa-

tion, however, there are no widely applicable quantum-mechanical approaches, and

most simulations are performed using classical Newtonian mechanics which is often

adequate due to large nuclear masses. However, the nuclear quantum e�ects are sig-

nificant for chemical processes involving light nuclei at low energies, and including

these e�ects into simulation, even approximately, is highly desirable. In this disserta-

tion, an approximate methodology of including quantum-mechanical e�ects within the

quantum trajectory or the de Broglie-Bohm formulation of the Schrödinger equations

is developed. Use of the trajectory framework makes the approach scalable to hun-

dreds of degrees of freedom. The methodology is applied to study high-dimensional

systems (solid He4 and others) relevant to chemistry.
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Chapter 1

Introduction

Since the discovery of quantum mechanics, chemical dynamics, in principle, can be

understood by solving the time-dependent Schrödinger equation (SE) for any quan-

tum system, which involves motion of the nuclei and electrons. However, the com-

putational e�orts to solve the equation scales exponentially with the system size,

which prevents us from getting exact numerical solutions for all but simplest systems.

Theoretical chemists are searching for approximations to help simplify the picture.

The most basic approximation, called the Born-Oppenheimer approximation, assumes

that the total wavefunction can be written as a product of the electronic wavefunc-

tion parametrically dependent on the nuclear position, and the nuclear wavefunction.

Chemical system consist of
nuclei and electron  (r,R, t)

Born-Oppenheimer
approximation

Electronic Schrödinger equa-
tion Ĥe�(r|R) = E(R)�(r|R)

Nuclear quantum dy-
namics on adiabatic

potential energy surface
ıh̄@t�(R, t) = Ĥ�(R, t)

Semiclassical nu-
clear dynamics

Semi-empirical
electronic structure

Classical molec-
ular dynamics

Figure 1.1: Scheme for molecular quantum dynamics

1
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Such an approximation greatly simplifies the whole dynamic picture ignoring the

“dynamic” correlation between the nuclei and electrons. Electronically non-adiabatic

and electron dynamics are reviewed here [86] and are not discussed in this thesis.

The electronic SE serves as a background for the nuclear wavefunction, by pro-

viding the potential energy surface (PES). There are standard quantum chemistry

software packages such as QChem [83], for solving the electronic Schrödinger equation

using wavefunction methods or density functional theory. For the nuclear SE, there

are no standard widely applicable QM tools. Due to the heavy mass of nuclei, the

classical limit of the TDSE is often useful, yielding the Newtonian mechanics of the

nuclei. Each nuclear configuration is represented by a classical trajectory evolving on

the PES.

The Born-Oppenheimer approximation and classical treatment of constitute nu-

clei make the molecular dynamics method. Fig. 1.1 gives a schematic view of the

approximations mentioned above.

In most cases, molecular dynamics simulations are adequate for experimentally rel-

evant quantities. However, there are experimental results where quantum-mechanical

e�ects of nuclear motion are important, and they cannot be reproduced using clas-

sical trajectories. QM e�ects in molecular dynamics, including zero-point energy,

tunneling e�ects, non-adiabatic e�ects are often needed for accurate description of

reactions in complex systems, such as biological environments, liquids, materials and

photochemistry. For example, Schreiner reported a tunneling controlled reaction of

methylhydroxycarbene in 2011 [80]. The reaction has two reaction pathways, one

with a lower energy barrier but large barrier width, the other with a higher but

thiner barrier. The reaction is dominated by the latter reaction pathway revealing

that the tunneling e�ects may define the reactivity at low temperature, because the

tunneling rate is very sensitive to the width of the energy barrier. Another example of

nuclear quantum e�ects comes from water and aqueous systems due to the large zero

2
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point energy (ZPE) contained in the O-H bond. The ZPE is the energy di�erence

between the ground state energy and the minimum of the potential. Ref. [15] gives

a comprehensive review the current status of including nuclear quantum e�ects in

the simulation of water systems. Analysis of Bowman and coworkers [19]’ simulation

for a water dimer based on quasi-classical trajectories clearly showed the problem

of the so-called zero-point energy leakage (ZPEL). The ZPEL is associated with in-

correct energy flow of high-frequency intramolecular vibration to the low-frequency

intermolecular vibration; initially the correct quantized energy drops below the ZPE

value and leaks into the reactive motion of monomers. ZPEL dissociates the dimer

which is incorrect and does not happen in QM. To include the QM e�ects into reac-

tive dynamics we have to solve TDSE for the nuclei. Due to exponential scaling of

the exact quantum dynamics, further approximations (semiclassical [39] and quasi-

classical methods [70]) are required to treat large molecular systems (of more than

4-5 atoms).

The Approximate Quantum Potential (AQP) method developed in our group

gives a cheap way of incorporation QM e�ects of nuclei into trajectory dynamics.

The method is based on the de Broglie-Bohm formulation of quantum mechanics,

where the wavefunction is represented by an ensemble of quantum trajectories.

The equations of motion for quantum trajectories di�er from classical trajectories

by an extra potential, the so-called quantum potential. This quantum potential

produces all quantum e�ects in the trajectory framework, but is di�cult to compute

exactly. Thus various approximations have been developed in our group. Chapter 2

introduces the basics of the theory and numerical implementations, used to simulate

a chemical reaction, including the approximate quantum potential method which

is at the core of the following chapters. The time-dependent Schrödinger equation

describes the evolution of a pure quantum state. In reality, most quantum systems

are in contact with an environment or bath, manifested as dissipation and fluctuation

3
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e�ects on the dynamics of the system that we are interested in.

To describe the energy dissipation, phenomenological friction is introduced into

the QT framework, which can be used to describe the irreversible energy flow from

the system to the bath. Moreover, dynamics with friction is an e�cient method to

obtain the ground-state, which is often the dominant QM e�ect, of a large quantum

system. Chapter 3 gives a detailed description of the method and applications to

model systems and atomic solids, specifically solid He.

For the simulation of atomic solids, we did not take the quantum statistics into

account. In rigorous quantum description, the wavefunction of solid helium-4 has to

satisfy the exchange symmetry. For electronic calculation, such condition is fulfilled

by the use of Slater determinant, constructed out of simple particle functions. The

same approach is not appropriate for nuclear system with large inter-particle corre-

lation. Thus we developed an approximate method to estimate the exchange e�ects

from a non-symmetric wavefunction. The method, which is based on the quantum

trajectory method, is described in Chapter 5 and results for some model systems is

given.

Though the quantum trajectory method gives us a convenient way to simulate

quantum dynamics, there are still challenges associated with approximations for the

quantum potential. The most notorious one is the singularity of the quantum poten-

tial, when interference is present. For problems where interference e�ects is impor-

tant, a method based on basis function is often more convenient. For such purpose,

we describe a method which combines the advantages of the trajectory representa-

tion and basis representation, which is called the quantum trajectory Gaussian bases

(QTGB). The essence of the method is that a superposition of Gaussian wavepackets

(GWP) is used to represent the wavefunction and the centers of the GWPs is guided

by the quantum trajectory.

Chapter 6 will give a detailed description of the method in the content of other

4
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Gaussian-basis methods. Chapter 8 concludes.

5
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Chapter 2

Theory of quantum molecular dynamics

2.1 Born-Oppenhermer approximation

In principle, the behavior of electrons and nuclei can be completely understood by

solving time-dependent Schrödinger equation (TDSE) ,

ı~ ˆ

ˆt
�(r, R, t) = Ĥ�(r, R, t), (2.1)

where the Hamiltonian operator can be written as

H = Te + TN + Ve + VN + VeN .

Te and TN are the kinetic energy operator for electrons and nuclei, Ve represents the

Coulomb interaction between electrons and VN interaction for nuclei. VNe is the inter-

action between nuclei and electrons. Under Born-Oppenheimer (BO) approximation,

the total wavefunction is written as a product form

�(r, R, t) = „(r|R)Â(R, t)

where we use r for electronic coordinates and R for nuclei.

Substitute into the TDSE, we obtain

ı~ˆtÂ(R, t)„(r|R) = (TN + VN + He)„(r|R)‰(R, t) (2.2)

For simplicity, assume there is only one nuclear degree of freedom (DOF), the kinetic

energy is written as

TN = ≠ ~2

2M
Ò2

R,

6
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put into the last equation we obtain,

ı~ˆtÂ(R, t)„(r|R) =(TN„(r|R))Â(R, t) + „(r|R)TNÂ(R, t) + He„(r|R)Â(R, t)

≠ ~2

M
ÒR„(r|R)ÒRÂ(R, t) (2.3)

Multiply both sides by „(r|R) and integration over electronic coordinates, we

obtain

ı~ˆtÂ(R, t) = D(1)(R, t) + D(2)(R, t) + (TN + VN)Â(R, t) + En(R)Â(R, t) (2.4)

where U(R) = È„(r|R)|He|„(r|R)Í and

D(1)(R, t) = È„|≠~2

M
ÒR|„Í ÒR‰(R, t) (2.5)

D(2)(R, t) = È„|≠~2

2M
Ò2

R|„Í ‰(R, t) (2.6)

Due to the nuclei are much heavier than electrons and the electronic transition re-

quires much energy than normal temperature, it is reasonable to assume the electrons

always stay in the ground electronic state n = 0 for particular nuclear configuration

R, i.e.

He„(r|R) = E0(R)„(r|R).

D(1)(R, t) and D(2)(R, t) are so-called non-adiabatic coupling terms, which can be

ignored for most applications. If we ignore the non-adiabatic coupling, we obtain the

nuclear Schrödinger equation

ı~ˆtÂ(R, t) = (TN + VN + E0(R))Â(R, t) © (TN + U(R))Â(R, t).

U(R) is the ground potential energy surface (PES), consist of the electronic energy

and nuclear repulsion.

There are standard quantum chemistry packages that can be used to solve the

electronic Schrödinger equation . There are also standard numerical methods to solve

the nuclear Schrödinger equation , but su�ers from the problem that the numerical

7
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cost scales exponentially with system size. Thus exact methods is limited to systems

consist of few particles.

Theoretical studies of chemical dynamics are typically based on classical trajecto-

ries that represent moving nuclei, since the cost of conventional quantum propagation

methods scales exponentially with the number of degree of freedoms. In most cases,

the classical trajectory results are often adequate for experimentally relevant quanti-

ties.

Nevertheless, quantum mechanical (QM) e�ects in molecular dynamics, including

zero-point energy, tunneling e�ects, non-adiabatic e�ects are often needed for accurate

description of reactions in complex systems, such as biological environments, liquids,

materials and photochemistry.

The Approximate Quantum Potential (AQP) Methodology developed in our group

gives a cheap way of incorporation QM e�ects into trajectory dynamics and we will

introduce it in following sections.

Several theoretical methods (quantum, semiclassical and classical) is introduced in

this chapter. And also a formal theoretical development of the approximate quantum

potential (AQP) method developed by our group is given.

Split-operator method

The most direct way to molecular quantum dynamics is to solve the time-dependent

Schrödinger equation for the nuclear motion.

ı~ˆtÂ(x, t) = ĤÂ(x, t), Ĥ = 1
2pT M≠1p + V (x), (2.7)

where x, p are the position and momentum operators and M = diag{m1, m2, · · · } is

the inverse mass matrix.

The wavefunction is a complex-valued function of spacial coordinates and time,

which can be represented in a convenient basis. Commonly, a set of finite basis

8
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representation (FBR) can be used, this FBR can be transformed into an alternative

discrete variable representation (DVR) through a unitary transformation, where the

potential energy operator is conveniently represented by a diagonal matrix.

An exact numerical solution of quantum mechanics using this idea is called split

operator method (SPO) [59, 60]. The SPO method takes advantage of the ease of

treating operators in their diagonal representations. The time dependent Schrödinger

equation (5.1) has the formal solution

Â(t) = Û(t)Â(0) = exp
3

≠ ı

~

⁄ t

0
Ĥ(tÕ)dtÕ

4
Â(0), (2.8)

The total evolution operator is broken into small increments of duration �t.

U(t) =
N≠1Ÿ

n=0
Û((n + 1)�t, n�t), �t = t/N, (2.9)

where

Û(t + �t, t) = exp
3

≠ ı

~Ĥ(t)�t
4

. (2.10)

The short time propagator, Û(�t) can be approximated by

Û(�t) = exp
3

≠ ı

~Ĥ�t
4

¥ exp
3

≠ ı

2~K̂�t
4

exp
3

≠ ı

~ V̂ �t
4

exp
3

≠ ı

2~K̂�t
4

+ O(�t3). (2.11)

The kinetic energy operator K̂ = P̂ 2/2m is diagonal in momentum space, and

the potential energy V̂ is diagonal in coordinate space. The fast Fourier transform

algorithm provides an accurate and fast unitary transformation between the two

representations.

2.2 The de Broglie-Bohm formulation of TDSE

The exact numerical solution of TDSE su�ers from the exponential scaling with sys-

tem size, thus it is not applicable for large molecular system. Many approximate

methods are developed to treat this problem and they can be mostly classified based

9
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on the formulation of quantum mechanics they are developed. Semiclassical meth-

ods are commonly based on Feynman’s path-integral formulation and parameterized

wavefunction methods are usually developed directly from Schrödinger equation with

time-dependent variational principle. Gaussian wavepacket is frequently employed in

the latter class of methods.

The approximate quantum potential (AQP) method is based on the de Broglie-

Bohm theory [7, 8]. The time-dependent Schrödinger equation (TDSE) of wavefunc-

tion has been the cornerstone of modern quantum chemistry,

ĤÂ(x, t) = ı~ˆÂ(x, t)
ˆt

. (2.12)

where x is a vector of positions for all degrees of freedom.

In de Broglie-Bohm theory, the wavefunction is represented in polar form with

the amplitude A(x, t) and phase S(x, t), which are both real functions of x and t,

Â(x, t) = A(x, t) exp
3

ı

~S(x, t)
4

. (2.13)

Substituting Eq. (6.10) into TDSE, one obtains

ˆS(x, t)
ˆt

= ÒS(x, t)2

2m
≠ V (x) ≠ U(x, t), (2.14)

ˆA2(x, t)
ˆt

= ≠ ˆ

ˆx

C

A2(x, t) · 1
m

ˆS(x, t)
ˆx

D

, (2.15)

(2.16)

where

U(x, t) = ≠ ~2

2m

Ò2A(x, t)
A(x, t) .. (2.17)

U is non-local time-dependent quantum potential, and is proportional to ~2. It is

important to note that the polar form is not useful at nodes, where Â = 0. The phase

is well-defined for times before and after the node passes over a fixed point in space,

not at the instant that the node crosses the point. The probability density is

fl(x, t) = Âú(x, t)Â(x, t) = A2(x, t). (2.18)

10
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The probability flux associated with Â(x, t) is given by (assuming each DOF has the

same mass m)

jµ(x, t) = ~
2mı

(Âú(x, t)ÒµÂ(x, t) ≠ Â(x, t)ÒµÂú(x, t)) . (2.19)

This quantity gives the rate at which probability flows past a fixed point. if we insert

the polar form of the wave function into equation 2.19, we get the flux in terms of

the density and the derivative of the action

jµ(x, t) = fl(x, t) · 1
m

ÒµS(x, t). (2.20)

In classical fluid flow, the flux is given by jµ = fl(x, t)vµ(x, t), where vµ(x, t) is

the flow velocity of the fluid in µ direction and fl(x, t) is the density of fluids.

In equation 2.19, we will make this association and refer to the flow velocity of

the probability fluid as the function [63]

v = 1
m

ÒS. (2.21)

We have dropped the position and temporal dependence in the notation.

Returning to equation 2.15, the term in brackets in the right side is just the

probability flux, thus, we finally obtain the standard form of the continuity equation

ˆfl(x, t)
ˆt

= ≠Ò · j = ≠Ò(flv). (2.22)

Equation 6.12 is the Eulerian version of the quantum Hamiltion-Jacobi equation. The

wavefunction can be discretized in coordinate space by quantum trajectories (QTs)

with position x and momentum p,

p = ÒS. (2.23)

When ~ æ 0, U becomes negligible and all of the trajectories become independent

of each other, which is the case of classical trajectories. The quantum potential U

11
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can be considered as a nonclassical contribution to the kinetic energy. For numerical

implementation, trajectories form an ensemble, representing the wavefunction, are

assigned certain weights wi, that depend on the initial probability density and the

volume associated with each trajectory,

wi = Âú(xi, t0)Â(xi, t0)dxi(t0) = A2(xi, t0)dxi(t0) = fl(xi, t0)dxi(t0). (2.24)

Space of non-negligible density is su�ciently sampled with trajectories, so that (Ntr

is the number of trajectories)
N

trÿ

i

wi ¥
⁄ +Œ

≠Œ
Âú(x, t)Â(x, t)dx = 1, (2.25)

and their weights remain constant in the course of dynamics [29]

dwi

dt
= 0. (2.26)

The evolution of trajectories is given by Hamilton’s equations of motion,

dxi

dt
= pi

m
, (2.27)

dpi

dt
= ≠Ò (V + U)|x=x

i

. (2.28)

The phase of wavefunction, S(xi, t), is equal to the action function Si of each

trajectory defined (in units of ~) by

dSi

dt
= pi · pi

2m
≠ (V + U)|x=x

i

. (2.29)

Observables and quantum mechanical operator

Consider an Hermitian operator Â which is a function of the operator x̂ and p̂:

Â = Â(x̂, p̂). In the position representation the quantum mechanical expectation

value of this operator in the normalized state Â(x, t) is given by

ÈÂÍ = ÈÂ|Â|ÂÍ

=
s

Âú(x)
Ë
Â(x̂, ≠ı~Ò)Â

È
(x)d3x

s
Âú(x)Â(x)d3x

(2.30)

12
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where

(ÂÂ)(x) =
⁄

Â(x, xÕ)Â(xÕ)d3xÕ (2.31)

The hermiticity of Â implies that only the real part of the integrand contributes to

2.30 and we can write

ÈÂÍ =
⁄

Âú(x)[Â(x̂, ≠ı~Ò)Â](x)d3x (2.32)

It is then reasonable to define an expression for the ‘local expectation value’ of the

operator Â in the state |ÂÍ in the position representation:

A(x, t) = Âú(x, t)(ÂÂ)(x, t) (2.33)

For instance, for the position operator in the position representation

x̂(x, xÕ) = x”(x ≠ xÕ), (2.34)

substituting equation 2.34 into equation 2.33, we will get

x = ÂúxÂ/ÂúÂ = x(t). (2.35)

The local expectation value of the position operator is the trajectory itself. Thus,

within the trajectory representation of wavefunction, the expectation values for the

position-dependent properties are easy to compute,

È�̂Í =
⁄ +Œ

≠Œ
Âú(x, t)�Â(x, t)dx =

N
trÿ

i=1
wi�(xi). (2.36)

Correlation function

Autocorrelation function can be computed directly from quantum trajectories,

C(2t) = ÈÂ(x, 0)|Â(x, 2t)Í = ÈÂ ú (x, t)|Â(x, t)Í =
⁄ +Œ

≠Œ
dxÂ2(x, t) (2.37)

Computed with quantum trajectories

C(2t) =
ÿ

i

wie
2ıS(x

i

,t), (2.38)

13



www.manaraa.com

where wi is the weight for i-th quantum trajectory.

The spectrum can be obtained by Fourier Transform the autocorrelation function.

‡(Ê) =
⁄ Œ

≠Œ
C(t)eıÊt dt (2.39)

Written in the eigenfunctions of the Hamiltonian „n

‡(Ê) =
ÿ

n

|cn|2”(Ê ≠ Ên), cn = È„n|Â0Í . (2.40)

2.3 Approxmiate quantum potential

Quantum potential, U , is responsible for all quantum e�ects. We use the QT formal-

ism as a well-defined semiclassical propagation method by making a single approxi-

mation to the quantum potential. The classical limit is defined as AQP being zero.

The essential idea is to get AQP from the global linear least-squares fitting of the

nonclassical component of the momentum operator [29],

r = ÒA(x, t)
A(x, t) ¥ r̃(x, t) (2.41)

at each time step in small basis f(x), which is analytically determined.

U ¥ ≠~2

2m
(r̃ · r̃ + Ò · r̃). (2.42)

The least squares fit [76] minimizes È(r ≠ r̃)2Í, where r̃ is represented in a linear basis

f(x).

For instance, for a two dimensional system, f(x) can be arranged as a vector

(1, x, y), so the approximate nonclassical momentum component is expressed as

r̃ = Cf , (2.43)

where C is a matrix of coe�cients, which solves the matrix equation

2 SC + B = 0. (2.44)
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The matrices are defined by the outer product of vectors

S = Èf ¢ fÍ , B = ÈÒ ¢ fÍT (2.45)

which, when expanded, are

S =

Q

cccccca

1 ÈxÍ ÈyÍ

ÈxÍ Èx2Í ÈxyÍ

ÈyÍ ÈxyÍ Èy2Í

R

ddddddb
, B =

Q

cccccca

0 0

1 0

0 1

R

ddddddb
(2.46)

The approximate quantum potential defined by Eqs. 5.55-2.45 is simply a quadratic

function of x yielding a linear quantum force (LQF) for every trajectory. This ap-

proximation rigorously conserves energy and is exact for Gaussian wavepacket, but

does not presume that Â(x, t) is necessarily a Gaussian wavefunction. Some other

approximations of quantum potential can be found in Refs [42, 94, 40, 57, 64, 87].

This simple approximation gives basic QM e�ects, such as wavepacket bifurcation,

moderate tunneling and zero-point energy [38].

2.4 Quasiclassical trajectory method

Quasi-classical trajectory (QCT) method is a widely used method for gas phase scat-

tering simulations. It is based on dynamics of classical trajectories, whose initial

conditions are quantized. A well known problem of this approach is the zero-point

energy leak (ZPEL). Quantum mechanically, each vibrational mode is expected to

contain certain amount of energy not lower than to ZPE of that mode. But in the

classical trajectory simulation, the energy can flow among the modes without this

restriction, thus yielding unphysical results. For direct reactive scattering at high

energies, which is fast compared to a period of a typical vibration, ZPEL is not a big

concern. However, incorrect flow of vibrational energy between the modes becomes

a problem at low energies and for bond-breaking processes [73, 81]. The ZPE of a

typical OH stretch is roughly 4.8 kcal/mol.
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In QCT, the initial conditions for the trajectories are chosen according to semi-

classical quantization rule: for diatomic molecule, the energy of each trajectory is

equal to the energy of the vibrational state and the action is quantized. The final dis-

tribution of trajectories is often analyzed according to a similar quantization scheme.

The trajectories evolve according to classical equations of motion

dx

dt
= p

m
, (2.47)

dp

dt
= ≠ÒV (x). (2.48)

Experimental quantities such as angular distribution and cross sections are easily

obtainable from QCT dynamics, which makes it a popular simulation tool.
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Chapter 3

Estimating quantum mechanical effects of

atomic solids using quantum molecular

dynamics with dissipation

Solid helium-4 is a well-known quantum atomic solid, characterized by large zero-

point energy that cannot be described by harmonic approximation. In this chapter,

we describe how to use a quantum molecular dynamics method with friction to com-

pute zero-point energy and pair distribution function for large-scale quantum system

and use it for solid helium-4. An modified approximation is made for the quantum

potential to fix the unbalance problem encountered while applying linearized quan-

tum force to systems with large anharmonicity. It is shown that the modified fitting

procedure is capable of capturing the zero-point energy for systems with large an-

harmonicity. Pair distribution function is also computed at various atomic mass to

study the dependence on mass.

3.1 Introduction

Solid helium-4 is a well-known quantum atomic solid, characterized by large zero-

point energy that cannot be described by harmonic approximation, which is a normal

way to get an estimate of zero-point energy. The same system with various density

and crystal structure has been studied by various authors using di�erent methods such

as variational path integral molecular dynamics and di�usion Monte Carlo method

for di�erent properties such as zero-point energy (ZPE) and pair distribution function
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(PDF) [? 74, 46, 45]. In this article, we will describe how to use a quantum molecular

dynamics method with friction to compute zero-point energy and pair distribution

function for large-scale quantum system and use it for solid helium-4 with 180 atoms.

Pair distribution function, can be obtained experimentally from the powder di�rac-

tion data, describes the average structure of materiel. It contains the information of

the distances between atoms [61, 16]. For a classical solid at absolute zero, it is sim-

ply some peaks of infinity intensity at values corresponding the pair distances in the

system. Due to large zero-point energy, the peaks will be broadened as the wave-

function of the system spreads over space. The dependence of atomic mass for PDF

is studied for solid helium-4. For the approach adopted here is a generic method to

study dissipated quantum system. Including dissipation into quantum system is gen-

erally designed to study the interaction between system and environment (“bath”),

which is an important phenomenon in real physical systems.. A complete discussion

of various topics about dissipated quantum system can be seen in [90].

Various authors use the Hamiltonian that is written as a sum of Hamiltonian of

the system HS, “bath” Hamiltonian of the bath HB and their interaction HSB,

H = HS + HB + HSB. (3.1)

This model is often referred as Caldeira-Leggett Hamiltonian in the solid-state physics

community.

Zwanzig [98] generalized the approach to nonlinear potentials. Recently, Caldeira

and Leggett [11] used the Hamiltonian to study strong damped systems. Predating

the model, there is another model called Caldirola-Kanai model [56] that does not

include the environmental degrees of freedom explicitly in the Hamiltonian. Recently,

A. S. Sanz adopted this model and studied wavepacket dynamics in viscid media in the

framework of Bohmian trajectories [78]. This model describes a dissipated quantum
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system that the total energy is damped to zero where the system is localized to one

point in configuration space, violating the Heisenberg uncertainty principle.

The model which is considered here is in analogy to Caldirola-Kanai model in the

aspect that the environmental degrees of freedom is not included in the Hamiltonian,

but di�er in that Heisenberg uncertainly will not be contradicted. The total energy

of system is dissipated to the ground state of the system at infinity time starting with

a trial wavefunction.

Inclusion of friction directly into the Schrödinger equation may be viewed as a

simple way to mimic the e�ect of energy transfer from the system to the environment

while containing quantum dynamics calculations to the system degrees of freedom.

In classical mechanics, the frictional force, often considered for processes happened in

condensed phase, is always taken as a particle velocity proportional term in equations

of motion. The equations of motion for a classical particle with mass m, position x

and momentum p while a friction force exists are as follows,

mẍ + “ẋ + ÒV (x) = 0 (3.2)

The classical trajectory evolves under the influence of an external potential V (x),

which is a function of the Cartesian coordinate, x, parameter “ denotes the friction

coe�cient.

In standard quantum mechanics, the concept of particles is missing, instead wave-

function is use to represent a system. However, in de Broglie-Bohm formulation of

quantum mechanics [5, 6], propagating the wavefunction is equivalent to the evolution

of an ensemble of so-called quantum trajectories (”fluid elements”), which represent

the wavefunction. Then it is naturally to extend the idea of friction into dynamics of

quantum trajectories, resulting in a similar equation of motion except the so-called

quantum potential term, which includes all the quantum e�ects. Except for concep-

tional problems, from a practical point of view, it is always di�cult to find the exact
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or even approximated solution for any complicated model other than some simple

ones such as free propagation and harmonic oscillator. Within the quantum trajec-

tory framework, the main challenge is the computation of quantum force, whose exact

solution requires the whole wavefunction. An accurate and practical approximation

called linear quantum force (LQF) [28, 27, 30] is used in [34] to obtain ground state

energy of arbitrary potential. The LQF approach is exact for the simulation with a

starting Gaussian wavepacket on the potential up to second order. In this article, an

unbalance problem is shown while applying the same approximation for systems with

large anharmonicity. A solution is proposed to fix the problem and extend the idea to

large-scale quantum systems, such as solid helium-4. It is shown by an anharmonic

model that the modified approximation is capable of capturing the zero-point energy

for systems with large anharmonicity.

3.2 Formulation

Bohmian mechanics

For the notations used in this paper, without specified, small Arabic letters (i, j, k...)

are used to label trajectories and Greek letters for degree of freedom (DoF) and bold

small letters for vectors and bold capital letters for matrix. Atomic units is used by

default.

In de Broglie-Bohm theory, the wavefunction is represented in polar form with

the amplitude A(x, t) and phase S(x, t), which are both real functions of x and t,

Â(x, t) = A(x, t) exp
3

ı

~S(x, t)
4

. (3.3)

The probability density can be represented by

fl(x, t) = Âú(x, t)Â(x, t) = A2(x, t). (3.4)
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Substituting Eq. (6.10) into TDSE, one obtains two coupled equations of ampli-

tude and phase,

ˆS(x, t)
ˆt

= ÒS(x, t)2

2m
≠ V (x) ≠ U(x, t), (3.5)

ˆfl(x, t)
ˆt

= ≠Ò
A

fl(x, t)ÒS

m

B

, (3.6)

(3.7)

where

U(x, t) = ≠ ~2

2m

Ò2A(x, t)
A(x, t) . (3.8)

U(x, t) is the so-called non-local time-dependent quantum potential, and is propor-

tional to ~2. Without loss of generality, we assume the mass m is the same for each

DoF.

Mij = mi”ij i, j œ [1, Ndim], (3.9)

where Ndim is the number of DoF.

Eq. (6.12) is the Eulerian version of the quantum Hamiltion-Jacobi equation,

di�ering from classical Hamilton-Jacobi equation by the quantum potential term.

The wavefunction can be discretized in coordinate space by quantum trajectories

(QTs) with position x and momentum p, defined as

p = ÒS, (3.10)

where Ò here represents a column vector of di�erential operator,

Ò =

S

WWWWWWWWWWU

ˆx1

ˆx2

...

ˆx
N

dim

T

XXXXXXXXXXV

(3.11)

When ~ æ 0, U becomes negligible and all of the trajectories become independent of

each other, which corresponds to the classical limit. The quantum potential U can
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be considered as a nonclassical contribution to the kinetic energy. The ensemble of

quantum trajectories, representing the wavefunction, are assigned certain weights wi,

that depends on the initial probability density and the volume associated with each

trajectory,

wi(t) = Âú(xi, t)Â(xi, t) dxi(t) (3.12)

Space of non-negligible density is su�ciently sampled with trajectories, Ntraj is

the number of trajectories. The normalization of the probability correspond to the

following relationship
N

trajÿ

i

wi ¥
⁄ +Œ

≠Œ
Âú(x, t)Â(x, t)dx = 1. (3.13)

The weight for each quantum trajectory remains constant in the course of dynamics

[30] in the Lagrangian frame-of-reference,

dwi

dt
= 0. (3.14)

The Lagrangian and Eulerian frame-of-references are connected by

d

dt
= ˆ

ˆt
+ v · Ò. (3.15)

The evolution of trajectories is given by Hamilton’s equations of motion,

dxi

dt
= pi

m
, (3.16)

dpi

dt
= ≠Ò (V + U)|x=x

i

. (3.17)

Here subscript i labels the trajectories. The phase of wavefunction, S(xi, t), is equal

to the action function Si of each trajectory defined (in units of ~) by

dSi

dt
= pi · pi

2m
≠ (V + U)|x=x

i

. (3.18)

The position-dependent observables Ô can be computed from the properties of

each quantum trajectory,

Ō =
⁄

dxfl(x, t)O(x) =
N

trajÿ

i

O(xi)wi (3.19)
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Incorporating friction

The friction term is straightly incorporated into the equation of motion of quantum

trajectories. With friction, the total energy of the system will decay to the ground

state. The energy is always transferring from the system to the “environment” degree

of freedom except the system gets to the ground state. The other direction, energy

flowing from the environment to the system, is not allowed if we keep the friction

constant as a positive constant, which is not required in general. Starting with a trial

wavefunction, quantum trajectories start to lose their kinetic energy and finally drift

to a region of zero net force.

This approach is firstly described in detail in [37], where some examples of com-

putation of zero-point energy for systems up to 10 atoms are shown. Here we make

an modification of the approximation of quantum potential and show its capability

to simulate large-scale quantum system of atomic solid.

The friction term depends on the velocity of each quantum trajectory and the

resulting TDSE is nonlinear; the time-dependent wavefunction conserves normaliza-

tion, while the total energy of the wavefunction decreases with time to the zero-point

energy value. The energy dissipation is proportional to the kinetic energy of quantum

trajectories,
dE

dt
= ≠2“K. (3.20)

The equations of motion for quantum trajectories with friction in the Lagrangian

frame are written as follows:

dp

dt
= ≠Ò(V (x) + U(x, t) ≠ “p (3.21)

dx

dt
= ≠ p

m
(3.22)

Integrating Eq. (3.21) with respect to x, the evolution of S(x, t) with friction

becomes

≠ˆS

ˆt
= p2

2m
+ V + U + “S + C(t). (3.23)
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The constant of integration C(t) is defined in [37],

C(t) = ≠ ÈS(x, t)Í . (3.24)

Together with continuity equation unchanged by friction, the conventional TDSE

with friction becomes

ı~ ˆ

ˆt
Â(x, t) = ĤÂ(x, t) + “(S(x, t) ≠ ÈS| (x, t) |)Í Â(x, t). (3.25)

Approximate quantum potential

The quantum potential, U(x, t), is responsible for all quantum-mechanical e�ects,

such as zero-point energy and quantum-mechanical tunneling e�ects. The classical

limit is defined as U æ 0. In our previous work [37], we were using linearized

quantum force method [30, 27] to get approximated quantum potential and quantum

force. And this approximation has been utilized in the simulations of enzymatic

reaction dynamics [68] and nano-materials such as hydrogen collision with carbon

flake [36, 89].

The procedure is briefly described as follows. The essential idea is to get approx-

imated quantum potential from the global linear least-squares fitting of the nonclas-

sical component of the momentum operator defined as

r–(x, t) = Ò–A(x, t)
A(x, t) ¥ r̃–(x, t) (3.26)

at each time step in small basis f(x), which is analytically determined.

U ¥
ÿ

–

≠~2

2m
(r̃– · r̃– + Ò–r̃–). (3.27)

The least-squares fitting [76] minimizes q
– ||(r– ≠ r̃–)||2, where r̃– is represented in

a linear basis f(x) = (1, x, y, z, . . . ).

The approximated quantum potential defined above is simply a quadratic function

of x yielding a linear quantum force (LQF) for every trajectory. This linear approx-

imation rigorously conserves energy and is exact for Gaussian wavepackets, but does
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not presume that Â(x, t) is necessarily a Gaussian wavefunction. LQF captures basic

QM e�ects, such as wavepacket bifurcation, moderate tunneling and zero-point en-

ergy [38]. Some other methods about approximations of quantum potential can be

found in Refs. [42, 94, 57, 87].

In principle, the expectation value of energy will decay to the ground state as

the kinetic energy of quantum trajectories decay to zero. At the ground state, the

quantum force, ÒU(x, t), will cancel the classical force so that there is no net force

for quantum trajectories, i.e. trajectories stop moving.

The challenge here is for an anharmonic system, the LQF does not have the cor-

responding higher order terms to balance classical force, which means the trajectories

will never stop. With a small friction constant, the quantum trajectories will wiggle

around equilibrium position and finally become localized.

Fitting with larger basis can cause a dramatic increase in computational cost. The

size of basis will be O(N2
dim) if we want to include all the quadratic terms into basis.

Besides that, adding higher order terms is not guaranteed to give better results.

Taking all of the factors into consideration, we proposed another least-square

fitting scheme to fix the unbalance problem. We add non-classical momentum into

equations of motion along with position and momentum of quantum trajectories,

notice that we do not need the exact values of r(x, t) in LQF approach. The whole

approximation is decomposed into two steps of polynomial fitting.

• The first step is to apply a global linear basis (1, x, y, . . . ) to do least-square fit-

ting of (p, r) to minimize {q
– ||(r–(x, t)≠ r̃–(x, t)||2,

q
– ||(p–(x, t)≠ p̃–(x, t)||2},

this first step is similar to the LQF except now we have the exact values of non-

classical momentum. The first step is necessary due to the fact that quantum

potential is a non-local property, the quantum trajectories should be influenced

by each other.
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• The second step is to fit the remainder

Ir =
ÿ

–

||r–(x, t) ≠ r̃–(x, t) ≠ ˜̃r–(x, t)||2

and

Ip =
ÿ

–

||p–(x, t) ≠ p̃–(x, t) ≠ ˜̃p–(x, t)||2

with a cubic basis for each DoF/atom. This second step is based on the first

step, can be taken as adding more flexibility to quantum potential to account

for anharmonic terms. The basis for this second step is di�erent for each DoF,

f– = (1, x–, x2
–, x3

–).

In order to do a fitting of non-classical momentum, one has to include the equation

of motion for non-classical momentum. Starting from continuity equation and after

some algebra, one can obtain

ṙ– = ≠
Q

a
ÿ

—

Ò–p—

m—
r— +

ÿ

—

Ò–Ò—p—

2m—

R

b (3.28)

Then in Lagrangian frame of reference, the exact equations of motion for (x, p, r)

will be

ẋ– = p–

m–
(3.29)

ṗ– = ≠Ò– (V (x) + U(x, t)) (3.30)

ṙ– = ≠
Q

a
ÿ

—

Ò–p—

m—
r— +

ÿ

—

Ò–Ò—p—

2m—

R

b (3.31)

where

Ũ(x, t) =
ÿ

–

≠ ~2

2m–

1
r̃2

–(x, t) + Ò–r̃–(x, t)
2

(3.32)

Equation of motion for nonclassical momentum

Start with continuity equation

ˆfl(x, t)
ˆt

+ Ò
3

fl(x, t) p

m

4
= 0 (3.33)
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substitute fl = A2 into the continuity equation, one obtains

2AˆtA +
ÿ

–

1
2AÒ–Am≠1

– p– + A2Ò–p–m≠1
–

2
= 0 (3.34)

divide by 2A2,

ˆt log A = ≠
ÿ

–

3
Ò– log Ap–m≠1

– + Ò–p–

2m–

4
. (3.35)

Apply partial derivative operator Ò– on both sides of the last equality and notice

r– = Ò– log A, one obtains

ṙ– = ≠
Q

a
ÿ

—

Ò–p—

m—
r— +

ÿ

—

Ò–Ò—p—

2m—

R

b (3.36)

If one only makes a linear approximation of momentum, the second term of the RHS

of Eq. (3.36) will vanish. The modified approximation will retain the second term

due to the high order term in the basis.

To specify all the terms that are fitted in the simulation, the equations of motion

with fitted terms (p̃, r̃) in Lagrangian frame of reference, will be

ẋ– = p̃–

m–
(3.37)

ṗ– = ≠Ò–

1
V (x) + Ũ(x, t)

2
≠ “p– (3.38)

ṙ– = ≠
Q

a
ÿ

—

Ò–p̃—

m—
r̃— +

ÿ

—

Ò–Ò— p̃—

2m—

R

b (3.39)

3.3 System setup

Classical potential energy

Here we describe some details about how to compute classical potential and force

fields.

The potential energy for each configuration is split into short-range interaction

and long-range interaction, defined by cuto� distance Rcut.
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The short-range interaction is computed by summing up all the interacting pairs

(ip),

V (r) =
ÿ

ip(i,j)
U(|rij|). (3.40)

where rij is the time-dependent vector pointing from atom i to atom j, and U(r) is

the interaction between two helium atoms separated by distance r.

The HFD-B(He) He2 pair interaction [2] is used to describe the inter-atomic in-

teraction U(r), shown in Fig. (3.1). Every atom k œ [1, Natom] in the solid has a

corresponding lattice site Rk, then the separation vector between atom k and atom j

at lattice sites is defined Rkj = Rj ≠Rk, periodic boundary conditions and minimum

image convention is used. For atom k, when we compute the distance between atom j

with it, we always choose the image of j that will give us the closed distance Rkj. We

say it is an interacting pair if the separation distance |Rkj| < Rcut. We go through

all the atoms in the simulation cell and build a neighbor list for each atom. The

neighbour list is not updated through the simulation even if the distance between two

atoms in an interacting pair get larger than Rcut during the simulation.

The separation vector rij between two helium atoms i, j not sitting at lattice sites

is defined as:

rij = ≠dri + Rij + drj, (3.41)

where dri, drj are displacement vectors for atom i and j from lattice sites respectively.

The two-body potential is computed over a fine grid of the square of the distance

between two atoms, the potential is computed using linear interpolation. When

the distance get too close, the potential is set to a constant. The classical force is

computed in the same way as potential, where the force is defined over the same grid

beforehand using finite di�erence method, and apply a pairwise sum to get the total

force,
ˆV

ˆdri
=

ÿ

j

2(≠dri + Rij + drj)
ˆV

ˆ|rij|2
(3.42)
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Figure 3.1: HFD-B(He) He2 pair interaction.

For the cuto� distance Rcut we used in our simulation, the HFD-B(He) He2 pair

interaction has not become close enough to a negligible value. To take account of the

contribution from the long-term corrections to the dynamics of quantum trajectories.

the long-range interaction is pre-computed by a polynomial fitting up to second order.

The fitting procedure is computed over a three-dimensional grid of the displacements

of one helium atom. The potential energy for long-range interaction is get by summing

up all the pair interactions between whose distance is over cuto� distance, taking

into periodic boundary conditions. The system size is enlarged until the long-range

potential is convergent to 10≠8 a.u.. We will obtain Np = Nx ◊ Ny ◊ Nz values

for potential and solve the following matrix equation to get the fitting coe�cients

c = {c1, c2, ...cN
b

}T ,

MT Mc = MT Vl, (3.43)
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where M is an Np ◊ Nb matrix, for each line, the elements are

M(i, j = 1, . . . , Nb) = {1, xi, yi, zi, x2
i , y2

i , z2
i , xiyi, yizi, xizi}, (3.44)

and Vl is the column vector including the long-range interaction values at all dis-

placements,

Vl(i) = Vl(xi, yi, zi), i œ [1, Np]. (3.45)

Nb is the number of basis terms, which in this case is 10.

The long-range force is computed analytically since we have polynomial expression

for long-range potential.

3.4 Numerical implementation

The implemented code written in Fortran and is massively paralleled by Message

Passing Interface (MPI), Fig. (3.2) shows the diagram of the work flow of the whole

simulation. Quantum trajectories are initiated with Monte Carlo sampling in the

root processor and then distributed over multiple nodes calling MPI subroutines.

Each node has multi-processors, which in our case is 16. Computing expectation

value of operators need the information of all the trajectories. In the first step of

our approximation to quantum potential, we need to construct a big matrix S of

dimensionality (Ndim +1)◊(Ndim +1) as (Ndim +1) is the number of basis used in the

linear fitting, f = (1, x1, x2, . . . , xN
dim

). It is necessary to gather all the information

to compute expectation values of any operator. Each matrix element of S will be an

expectation value of position operator, i.e.

Sij =
N

trajÿ

k

f (k)
i f (k)

j wk (3.46)

After the quantum trajectories part is paralleled, the computation of classical force

which requires the program to go through all the interacting pairs is automatically

paralleled, which is a general strategy for molecular dynamics simulation. The rate-

limiting step then become the construction of matrix S used in the Least square
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Initialize sampling of quantum
trajectories, x,p, r

Distribute quantum trajectories
to slave processors

QT[1, N ], construct overlap ma-
trix for linear fitting

QT[N+1,2N], · · ·,construct over-
lap matrix for linear fitting

QT[N
traj

-N+1,N
traj

],construct
overlap matrix for linear fitting

Global summation of overlap
matrix for linear fitting.

Call LAPACK to solve system
of linear equations, distribute
linear fitting coefficients to slave
processors

Construct overlap matrix for cu-
bic fitting for each DOF

Construct overlap matrix for cu-
bic fitting for each DOF

Construct overlap matrix for cu-
bic fitting for each DOF

Global summation of overlap
matrix for cubic fitting

Call LAPACK to solve system
of matrix equations, distribute
fitting coefficients to each pro-
cessor

1. Compute classical and quan-
tum force
2. Propagate QTs by �t
3. compute desired quantities

1. Compute classical and quan-
tum force
2. Propagate QTs by �t
3. compute desired quantities

1. Compute classical and quan-
tum force
2. Propagate QTs by �t
3. compute desired quantities

Global summation of desired
quantities, output quantities

Final time? STOP

ROOT (RANK 0) RANK 1..N
proc

-1 RANK N
proc

no

yes

Figure 3.2: Flowchart of parallelization, quantum trajectories are distributed among
processors such that the computing of classical force is paralleled.

fitting of non-classical momentum. To increase the e�ciency of parallelization, the

computation of matrix elements of S is distributed onto all Nproc processors, i.e. each

processor computes a copy of Si. One does a global sum over processors to obtain

the final results at root processor, S = qN
proc

i Si. The same strategy is used for the

second step of the fitting, where a 4 ◊ 4 array is constructed for each DoF.
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3.5 Results and discussion

Coupled anharmonic oscilator

To illustrate the unbalance problem we discussed above, we choose coupled anhar-

monic oscillator as a model. The potential is written as

V (x, y) = 1
2(x2 + 1

2x4) + 1
2(y2 + 1

2y4) + ‘xy (3.47)

‘ is a parameter that can be used to control the coupling between two anharmonic

oscillators. We set it to 0.5 here. We use the linear quantum force approach and

modified approximation method both for this model system. Fig. (3.5) shows how

total energy changes with time, it is clear to see the di�erence between two curves.

At t ≥ 1.5 a.u., the total energy already decay to the ground state in the modified

method. Fig. (3.3) shows the movement of quantum trajectories in x axis, while Fig.

(3.4) is the same quantity for modified quantum force. The quantum trajectories

with LQF tend to localize at the positions where the quantum force and classical

force cancel each other, considering the unbalance problem, there are only at most

few points in the potential energy surface that fulfill the requirement. As we can

see, at long time, trajectories tend to gather at those points, which cannot be a good

representation of the whole wavefunction.

Solid helium-4

For zero-point energy computation, the specific system we used in this paper is hexag-

onal close packed (hcp) sold 4He at density fl = 4.61421 ◊ 10≠3 a≠3
0 , corresponding to

molar volume Vmol = 19.34 cm3/mol. The nearest-neighbor distance is 6.74223 a0.

R.J. Hinde has computed the zero-point energy for the same model using variational

path integral approach in [? ]. The initial wavefunction is chose as a product of
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Figure 3.3: Quantum trajectories in x axis for coupled anharmonic oscillator with
linear quantum force.

Crystal cell 5 ◊ 3 ◊ 3
Rcut 13.8 a0
Ntraj 19200
Ndim 3 ◊ 180
m– 4 ◊ 1836
“ 8;12
”t 3
Â(x, t0) Gaussian
Gaussian width 0.8

Table 3.1: Simation parameters

gaussians centered at lattice sites of each atom,

Â(x, t0) =
N

dimŸ

i=1

32–i

fi

4 1
4

exp(≠–i(xi ≠ qi)2) (3.48)

The gaussian is set to be –i = 0.8 a0 and time step �t = 3 a.u.. The friction constant

is chosen at 8 and 12 to check convergence.
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Figure 3.4: Quantum trajectories in x axis for coupled anharmonic oscillator with
modified approximation to quantum potential.

“ Fitting range [104a.u.] ZPE [K/atom] Other work [K/atom]
12 9-12 -5.50 -5.48 [? ]
40 9-12 -5.54 -5.50 [13]

Table 3.2: Zero-Point Energy Estimate for various friction constant

For numeral e�ciency, the long-time E(t) is fit with an exponential function

E = A exp(≠Bt) + ZPE,

, which gives ZPE estimate.

Pair distribution function

Pair distribution function g(r), which represents the distance distribution between

atoms, measures the disorder of a system and it is defined as
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Figure 3.5: Energy components with friction coe�cient “ = 6 for linearly coupled two-
dimensional anharmonic oscilator. Ntraj = 4800, �t = 0.002 a.u., mx = my = 1 a.u.

g(r1, r2) = N(N ≠ 1)
fl2 fl(r1, r2). (3.49)

where N is the number of particles and V is volume. fl = N
V is the single particle

density and fl(r1, r2) is the joint probability.

fl(r1, r2) =
⁄

· · ·
⁄

dr3 · · · drN fl(r1, · · · , rN) (3.50)

where

fl(r1, r2, · · · , rN) = Âú(r1, r2, · · · , rN)Â(r1, r2, · · · , rN). (3.51)

The one-dimensional pair distribution function can be obtained by averaging g(r1, r2)

with the center of mass and polar angles ◊ and „. Notice
s

dr represents a three-

dimensional integration.
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g(|r12|) =
s

·· ·
s

g(r1, r2) d(r1+r2
2 ) d„ d(cos ◊)

s
d(r1+r2

2 )
s 2fi

0 d„
s fi

0 d(cos ◊)
(3.52)

Since the wavefunction is represented by an ensemble of quantum trajectories,

it will be convenient if we can transform the expression using terms that can be

computed directly from trajectories.

g(r) =
⁄

g(|r12|)”(r ≠ |r12|) d|r12| (3.53)

= N(N ≠ 1)
fl2

1
4fiV

⁄
· · ·

⁄
fl(r1, r2)”(r ≠ |r12|) d(r1 + r2

2 ) d„ d(cos ◊)d|r12|

(3.54)

Notice the dr12 = |r12|2 d|r12|d„d(cos ◊) and substitute into the last equation, we

obtain
g(r) = N≠1

4fifl È”(r≠ | r12 | )
|r12|2

(3.55)

Here È. . .Í represents quantum ensemble average.

For numerical reason, we will plot a histogram for pair distribution function g(r)

over a range (Rmin, Rmax) split into N intervals.

Fig. (3.6) shows the pair distribution function computed at density fl = 5.231 ◊

10≠3 a≠3
0 . The value is chosen such that we can compare out results with make a

comparison with results obtained using variational path integral molecular dynamics

in S. Miura’s work [74]. The results shows first two peaks in the PDF, which is in

good agreement with S. Miura’s work in the position of peaks and intensity, even

though we are using di�erent pair interaction. For di�erent atomic mass, 3He has a

slightly wider peaks in PDF which is as expected as the wavefunction should be more

spread out with lighter mass. While we change the mass to 8 ◊ 1836 a.u., we see a

much sharper peak, which is closer to a classical picture. It simply says, the system
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Figure 3.6: Pair distributin function g(r) for various atomic mass, 4He, 3He, 8He.

become more ordered while having a heavier atom and more disordered with a lighter

atom, which is exactly what we would expect.

3.6 Conclusions

We describe a general approach to simulate large-scale quantum system dissipated

to the ground state within the framework of quantum trajectories. Static properties

such as zero-point energy and pair distribution function of quantum system can be

obtained in the simulation. Specially, the simulation of quantum solid of helium-4 is

represented in this paper. We showed an unbalance problem while adopting LQF to

approximate quantum potential and an proposed solution is shown to be capable of

capturing the zero-point energy in the model system with large anharmonicity.

We also studied how pair distribution function changes due to the change of

particle mass. To conclude, with heavier mass, the disorder of quantum system at
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ground state caused by zero-point motion will become less significant.

The further work will include computation of through real time quantum correla-

tion function [67, 9] to obtain dynamic properties like di�usion constant or spectrum

of vibrational modes using quantum trajectory method with approximated quantum

potential [32, 22].
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Chapter 4

Determination of the collective modes from

the quantum-mechanical time-correlation

functions

Theoretical characterization of vibrational spectra for large molecular systems often

comes from the normal modes analysis derived from the quadratic approximation of

the potential energy surface near its minimum. The normal modes of motion pro-

vide accurate representation of low-energy collective motion within a system near

equilibrium, but they may be inadequate at high energies or for strongly anhar-

monic systems. In this article the collective modes of motion are examined from the

time-dependent perspective. It is shown that the imaginary part of the quantum-

mechanical position-position correlation functions contains all the information about

the collective modes of motion without the harmonic approximation on the potential

energy of a system.

4.1 Introduction

The electrons and nuclei forming a molecule are traditionally described within the

Born-Oppenheimer approximation: the electronic time-independent Schrödinger equa-

tion (SE) is solved for a fixed geometry of the nuclei, and the ground state electronic

energy together with the nuclear repulsion yields a single point of a potential energy

surface (PES). The nuclei are routinely treated as classical particles moving on the

electronic PES, but sometimes the quantum regime of nuclear behavior, character-
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ized by large energy level spacing, is essential to understand processes in a molecular

system. In this case the SE has to be solved for the nuclei, which is very challenging

to do for a polyatomic system by traditional basis approaches of constructing and

diagonalizing the Hamiltonian matrix (see Ref. [12, 10] as examples). An alternative

is to use the time-evolution of wavefunctions to extract information on the energy

levels, excitation energies and to get physical insight into the collective modes of mo-

tion within the system, possibly within the limited range of energies [59, 85]. For a

system of N nuclei, each described in a three-dimensional space, 3 degrees of freedom

(DOFs) describe the overall translation (uncoupled from the internal motion) and

another 3 DOFs describe the overall rotation of a system. The remaining 3N ≠ 6

internal DOFs (3N ≠ 5 for linear molecules) define the rovibrational spectrum. Often

’collective’ is referred to a low-energy mode which involves large number of DOFs.

We will refer to modes as being ’collective’ in a more general sense of eigenmodes

involving multiple DOFs describing di�erent atoms and whose energies are isolated

within the energy spectrum.

Speaking more generally, the idea of special coordinates or modes of motion char-

acterizing a large system is widely used in physics and chemistry. Some textbook

examples is the reaction coordinate describing progress of a chemical reaction or

phonons in a a solid state. In theoretical chemistry, the instantaneous normal modes

theories have been developed to describe short-dynamics of liquids and to give insight

into their collective many-body motions [17, 1, 65]. In quasiclassical molecular dynam-

ics, including reactive dynamics, the normal modes analysis on-the-fly has been used

recently to deal with the zero-point energy leak in systems of 5-9 atoms [19, 20, 44].

In the area of the energy transfer, i. e. electronic excitations are coupled to a phonon

bath representing the nuclear DOFs, Bittner, Burghard and co-workers have devel-

oped and applied a method (and its hierarchies) of identifying three phonon modes

coupled to the electronic DOFs, replacing the coupling to the full high-dimensional
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bath, which greatly simplifies description of electronic relaxation. [14, 41, 84, 96, 97]

Going back to the vibrational motion in a molecule, the standard eigenmode anal-

ysis of motion in a large (N > 4) system, often provided in the electronic structure

packages, is based on the normal modes approximation: the PES as a function of

coordinates is expanded through the second order near its minimum and the eigen-

values/eigenvectors of the corresponding Hessian matrix yield the energies and the

coordinates defining the normal modes of motion. For a quantum system, this infor-

mation gives estimates of the zero-point-energy (ZPE) and is used to interpret the

vibrational infrared spectrum. This approach works in the regime of small amplitude

motion and of small anharmonicity due to the underlying quadratic approximation

to the PES. For more general PESs, for example, for those exhibiting the double-well

character typical of reactions in condensed phase, one cannot readily extract informa-

tion about the collective motion of atoms since the normal mode analysis is invalid.

Below we describe how the anharmonic collective modes can be identified by analyzing

the quantum dynamics of a nuclear wavefunction, namely from the position-position

correlation functions. The imaginary parts of the correlation functions contain infor-

mation on the excitation energies (the di�erences between the energy levels) and on

the contributions of a particular DOF to a specific collective mode.

4.2 The formalism

Normal and collective coordinates

Let us first briefly review the normal modes analysis based on the harmonic approx-

imation to the PES. Describing N particles in Cartesian coordinates x and denoting

the total number of DOFs as f = 3N , the Hamiltonian can be written in mass-scaled

coordinates xÕ
i = x

iÔ
m

i

,

Ĥ =
fÿ

i=1

p̂2
i

2mi
+ V (x) =

fÿ

i=1

(p̂Õ
i)2

2 + V (xÕ). (4.1)
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The vector x = (x1, y1, z1, . . . , xN , yN , zN) lists positions of all atoms in the Cartesian

space; mi is the mass for the ith DOF. For simplicity, the coordinates will always be

mass-scaled (mÕ
k = 1) below and the primes will be dropped hereafter.

The potential is expanded through the second-order around an equilibrium geom-

etry xe,

V (x) = V (xe) +
ÿ

i

ˆV

ˆxi

-----
x

e

(xi ≠ xei) + 1
2

ÿ

i,j

ˆ2V

ˆxiˆxj

-----
x

e

(xi ≠ xei)(xj ≠ xej),

where xe is a stationary point, i.e.

ˆV

ˆxi

-----
x

e

= 0, i = {1, 2, . . . , f}

The Hessian matrix H is defined by the second-order derivatives of the potential

energy V (x),

Hij = ˆ2V (x)
ˆxiˆxj

Setting the constant in the potential energy so that the bottom of the well is zero,

and shifting the coordinates so that the minimum is at xe = 0, V becomes

V (x) = 1
2xT Hx.

If the Hessian matrix H can be diagonalized and D is the corresponding diagonal

matrix with the diagonal elements {D11, D22, . . . , Dff},

H = UT DU, (4.2)

then the normal mode coordinates are defined by the unitary matrix U as,

Q = Ux. (4.3)

Using these coordinates and their conjugate momentum operators,

P̂k = ≠ı~ ˆ

ˆQk
, (4.4)
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the potential energy is written as

V (Q) = 1
2xT UT DUx = 1

2QT DQ, (4.5)

and the Hamiltonian of Eq. (5.2) separates into f independent harmonic-oscillator

Hamiltonians with di�erent frequencies Êk,

Ĥ =
fÿ

k=1
ĤHO

k =
fÿ

k=1

1
2(P̂ 2

k + Ê2
kQ2

k), Êk =
Ò

Dkk. (4.6)

Neglecting with the coupling of the overall rotation and internal motion, there are

3N ≠ 6 frequencies (or 3N ≠ 5 for linear molecules) relevant to the rovibrational

spectrum.

The normal modes analysis is based on the transformation of coordinates, given by

U , which simultaneously diagonalizes the potential V and the kinetic energy operator

K̂. Thus, the transformation of coordinates is uniquely defined by the diagonalization

of the Hessian matrix. If the potential is anharmonic but separable in some unknown

set of linear coordinates, then we can (i) define a general linear transformation, given

by the matrix T Õ, so that the kinetic energy operator remains diagonal, and then

(ii) within those transformations search for new coordinates in which V is maximally

uncoupled. Expressing the kinetic energy in the transformed coordinates Q = T Õx,

K̂ = ≠1
2

ÿ

i

ˆ2

ˆx2
i

= ≠1
2

ÿ

jk

A
ÿ

i

T Õ
jiT

Õ
ki

B
ˆ2

ˆQjˆQk
, (4.7)

the condition to have zero cross-terms in the operator expression is

ÿ

i

T Õ
jiT

Õ
ki =

ÿ

i

T Õ
ji(T Õ

ik)T = (T Õ(T Õ)T )jk = Djj”jk (4.8)

where D is an arbitrary diagonal matrix. The coordinates can be scaled so that this

matrix becomes the identity matrix I. This means that there is a unitary transfor-

mation described by the matrix T ,

T = D≠1/2T Õ, T T T = I, (4.9)
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which transforms K̂ into the diagonal operator. The o�-diagonal elements of T ,

while satisfying Eq. (4.8), can be chosen to have V in separable form in the new

collective coordinates Q = Tx. These eigenmode coordinates Q can be found using

the quantum-mechanical position-position correlation functions as described in the

remainder of this Section.

The commutator correlation function

Consider a commutator correlation function defined as

DAB(t) = È[Â, B̂(t)]Í , (4.10)

where Â and B̂ are two operators and [·] denotes a commutator,

[Â, B̂] = ÂB̂ ≠ B̂Â.

Denoting the time evolution operator as Û(t) = e≠ıĤt/~ and using

CAB(t) = ÈÂB̂(t)Í = ÈÂ0|ÂÛ †(t)B̂Û(t)|Â0Í = ÈÛ(t)Â†Â0|B̂Â(t)Í

=
e
B̂Â(t)

--- Û(t)Â†
--- Â0

fú
= ÈÂ0|Û †(t)B̂†U(t)Â†|Â0Í

ú = ÈB̂†(t)Â†Íú
, (4.11)

one obtains the following relationship for two Hermitian operators Â and B̂,

CAB(t) = ÈÂB̂(t)Í = ÈB̂(t)ÂÍú
. (4.12)

Therefore, the commutator correlation function DAB(t) is simply proportional to the

imaginary part of the usual quantum correlation function CAB(t),

DAB(t) = 2ı⁄(ÈÂB̂(t)Í) = 2ı⁄ (CAB(t)) (4.13)

The eigenmodes can be analyzed using correlation functions of the position oper-

ators Â = xi and B̂ = xj. The classical position-position functions are widely used
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in molecular dynamics [47]. Interpretation of the imaginary part of the QM position-

position function of Eq. (4.13) as the commutator underscores the di�erence between

the quantum and classical descriptions.

If there is a linear transformation of the coordinates which takes the Hamiltonian

into a separable form, then expressing Eq. (4.13) in these transformed coordinates,

xi =
ÿ

j

T T
ij Qj =

ÿ

j

TjiQj, (4.14)

choosing the operators as Â = xi and B̂ = xj, and using the commutation relationship

[Qj, Qk(t)]k ”=j = 0, one obtains

Dx
i

x
j

(t) = È[xi, xj(t)]Í = È[
ÿ

k

TkiQk,
ÿ

l

TljQl(t)]Í

=
ÿ

k,l

TkiTlj”kl È[Qk, Ql(t)]Í =
ÿ

k

TkiTkj È[Qk, Qk(t)]Í (4.15)

Specifically, for Â = B̂ = xi,

Dx
i

x
i

(t) =
ÿ

k

T 2
ki È[Qk, Qk(t)]Í . (4.16)

For a fully separated Hamiltonian, the cross-correlation functions (i ”= j) are zeros

since each DOF contributes only to a single mode, i. e. TkiTkj = 0.

The harmonic oscillator

For the harmonic oscillator the commutator correlation function DAB(t) of Eq. (4.15)

is analytical. For each normal mode coordinate Qk characterized by the frequency

Êk, in the Heisenberg representation the time-evolution is included in the operator

Qk (Pk is the conjugate momentum operator to Qk)

Q̂k(t) = Q̂k cos(Êkt) + P̂k

Êk
sin(Êkt). (4.17)

Using the commutation relations between the operators in the normal coordinates

[Q̂k, Q̂k] = 0, [Q̂k, P̂k] = ı~ (4.18)
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in Eq. (4.15) one obtains the correlation function,

Dx
i

x
j

(t) = ı~
ÿ

k

Ê≠1
k TkiTkj sin(Êkt). (4.19)

With Eq. (4.13), this gives

⁄(Cx
i

x
j

(t)) = ~
2

ÿ

k

Ê≠1
k TkiTkj sin(Êkt) (4.20)

whose Fourier Transform (FT), in turn, yields:

F [⁄(Cx
i

x
j

)] = 1
2fi

⁄ Œ

≠Œ
⁄(Cx

i

x
j

(t))e≠ıÊt dt (4.21)

=
ÿ

k

~
4Êk

TkiTkj (”(Ê ≠ Êk) ≠ ”(Ê + Êk)) (4.22)

Considering just the positive frequencies in Eq. (4.22), the FT of the auto-correlation

function Cx
i

x
i

(t),

F [⁄(Cx
i

x
i

)] = ~
4

ÿ

k

Ê≠1
k TkiTki”(Ê ≠ Êk) (4.23)

gives the frequencies of all the normal modes (labeled k) involving the ith DOF, i.e.

of the modes for which Tki ”= 0. The quantity T 2
ki measures the contribution of the

ith DOF to the kth mode. To compensate for the Ê≠1
k on the right-hand-side of Eq.

(4.23), one can use the FT of the time-derivative of ⁄(Cx
i

x
j

), which also corresponds

to the position-momentum correlation function. Equivalently, F [⁄(Cx
i

x
i

)] can be

simply multiplied by Ê to have the peaks in the FT weighted by the elements of the

transformation matrix.

The relative sign of contributions from xi and xj to the kth mode can be deduced

by the sign of the corresponding peak at Ê = Êk in the FT of the cross-correlation

functions Cx
i

x
j

(t). In numerical implementation the ”-function in the FT of Eq.

(4.23) is represented by the Gaussian function of finite amplitude and width,

”(Ê ≠ Êk) = lim
‘æ0

Û
1

4fi‘
exp

A

≠(Ê ≠ Êk)2

4‘

B

. (4.24)

The parameter ‘ defines damping of the ’signal’ ⁄(CAB), multiplied by g(t) = exp(≠‘t2)

before the FT is performed, and is related to the temporal length of ⁄(CAB). Note,
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|C(t)|
<(C(t))

=(C(t))

|C(t)|

Figure 4.1: Cxx(t) for a harmonic oscillator of frequency Ê1 = 1 for two di�erent
initial wavefunctions labeled 1 and 2 and specified in Table 4.1.

that for the harmonic oscillator the commutator correlation functions are independent

on the initial wavefunction Â(x, 0). This fact is illustrated in Fig. 4.1 for three di�er-

ent Gaussian wavefunctions evolving in the harmonic potential of frequency w = 1.

The parameters of the initial wavefunction, taken as a Gaussian,

Â0(x) =
32–

fi

41/4
e≠–(x≠x0)2

, (4.25)

are listed in Table 4.1.

Anharmonic systems

If the potential is anharmonic yet separable in some unknown set of linear coordinates

specified by the unitary transformation matrix T , then the eigenmodes are well de-

fined. The commutator correlation functions in terms of the elements of T are given
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by Eqs (4.15) and (4.16). To analyze the correlation functions let us use a complete

set of the eigenstates of the Hamiltonian:

Ĥ„n = ~Ên„n.

Denoting the excitation energies Êkn,

Êkn = Êk ≠ Ên, (4.26)

and inserting the resolution of identity I = q
n |„nÍ È„n| in Eq. (4.11) three times

one obtains

CAB(t) =
ÿ

m,n,k

ÈÂ0|„mÍ È„m|AU †(t)„nÍ È„nBU(t)„kÍ È„k|Â0Í

=
ÿ

k,n

ck

A
ÿ

m

cú
mAmn

B

Bnke≠ıÊ
kn

t, (4.27)

where the coe�cient ck is the projection of Â0 on the eigenstates „k, ck = È„k|Â0Í, and

Amn, Bmn are the matrix elements of operators Â and B̂ evaluated in the basis {„n}.

The FT of the correlation function (4.27) exhibits peaks at the excitation energies:

F [CAB](Ê) = 1
2fi

⁄ Œ

≠Œ
CAB(t)e+ıÊt dt =

ÿ

k,n

ck

A
ÿ

m

cú
mAmn

B

Bnk”(Ê ≠ Êkn). (4.28)

For an anharmonic system the matrix elements of the position operator are gener-

ally nonzero, Bnk ”= 0, though the largest magnitudes are expected for Bn,n±1. Thus,

for an arbitrary initial wavefunction which is a superposition of many eigenstates,

the FT gives peaks at the excitation energies. Furthermore, it is possible to identify

which DOFs contribute to each mode by analyzing the relative peak heights in the

FTs of the correlation functions DAB(t), where Â and B̂ are the position operators

{x1, . . . , xf}. The relative heights of the peaks depend on the matrix elements of T .

For the peaks in FTs of Dx
i

x
i

and Dx
i

x
j

at the same Êkn for any n we have:

F [⁄(Cx
i

x
i

)](Ê = Êkn)
F [⁄(Cx

j

x
j

)](Ê = Êkn) =
A

Tki

Tkj

B2

. (4.29)
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Therefore, for an anharmonic systems with separable potential, the anharmonicity

will result in having peaks for various vibrational excitation corresponding to that

anharmonic mode (0 æ 1, 1 æ 2 and so on). The peak intensities will depend on the

initial wavefunction Â(x, 0). However, the initial wavefunction has no influence on

the relative peak height: in other words, for each peak belonging to anharmonic mode

k, the pattern or the contribution from each DOF remains the same, as illustrated in

Section 4.3 describing separable models and a weakly coupled system.

4.3 Implementation and numerical examples

Illustration of the formalism is given for model two-dimensional systems using the

split-operator Fast Fourier Transform method [59, 21] to compute time-dependent QM

correlation functions. To mitigate the e�ect of finite propagation time the correlation

functions are multiplied by the damping function g(t) = exp(≠‘t2),

f̃(Ê) = 1
2fi

⁄ Œ

≠Œ
f(t)e≠ıÊt≠‘t2

dt. (4.30)

The parameter ‘ was set to have g(tf ) = 10≠4 at the final propagation time tf . The

damping does not shift the peak positions but somewhat a�ects the peak magnitudes

[85]. We start with real wavefunctions Â0 and use symmetry in forward/backward

evolution in time,

Â(x, ≠t) = Âú(x, t), CAB(≠t) = ÈAB(≠t)Í = Cú
AB(t). (4.31)

Then, the imaginary part of CAB(t) is odd with respect to time, and the FT over

infinite time, t = (≠Œ, Œ), is reduced to

F [f ](Ê) = 1
fi

⁄ Œ

0
f(t) sin(Êt)e≠‘t2

dt. (4.32)
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Coupled harmonic system

Consider a system of two coupled harmonic oscillators (f = 2),

Ĥ = 1
2(p̂2

x + p̂2
y) + V (x, y), (4.33)

where

V = 1
2(x2 + y2) + 0.4xy (4.34)

The Hessian matrix is diagonalized, H = U †DU , by the unitary transformation U :

U =

Q

cca

Ô
2

2 ≠
Ô

2
2

Ô
2

2

Ô
2

2

R

ddb , D =

Q

cca
1.4 0.0

0.0 0.6

R

ddb

The initial wavefunction is chosen as a real displaced Gaussian wavepacket,

Â0(x, y) =
3

–1–2
fi2

41/4
e≠(–1(x≠x0)2+–2(y≠y0)2)/2, (4.35)

where (x0, y0) is the center of a Gaussian and (–1, –2) define its dispersion.

The FTs of the imaginary parts of Cxx, Cxy and Cyy are shown in Fig. 4.2. The

initial wavefunction is specified in Table 4.1. Due to symmetry, the results for Cxx

and Cyy are superimposed on the graph. All the information about the collective

motion of the system is contained in Fig. 4.2. There are two normal modes and

the coordinates are making equal contribution to both modes, as seen from the ratio

of peak intensities of the diagonal functions, Cxx and Cyy. The relative phase is

contained in the cross-correlation function Cxy. The peaks near Ê1 = 0.78 show that

the contributions from the two DOFs are of equal magnitude and opposite sign, which

corresponds to the symmetric stretch, Q1 = (x ≠ y)/
Ô

2. The peaks near Ê2 = 1.18

are of the same magnitude and sign, corresponding to the anti-symmetric stretch

Q2 = (x + y)/
Ô

2.

Anharmonic models

In anharmonic systems the imaginary part of position-position quantum correlation

depends on the initial wavefunction, but the excitation energies and relative peak
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Figure 4.2: The 2D harmonic oscillator model (Eq. (4.34)). The FTs of the imaginary
parts of Cxx, Cyy and Cxy multiplied by w. The vertical blue lines mark the analytical
frequencies.

intensities in the corresponding FTs do not. To contrast with the harmonic oscillator

example of Section 6.2, we examine the imaginary part of the quantum correlation

function for the one-dimensional Morse potential,

V (x) = De(1 ≠ e≠x)2, De = 2 Eh. (4.36)

The imaginary parts of Cxx(t) for di�erent initial Gaussian wavefunctions, described

in Table 4.1, shown in Fig 4.3, clearly depend on the initial wavefunction. (This

dependence can be used to assess the anharmonicity of the potential.) Thus, the

absolute intensity of the peaks of the corresponding FTs will depend on the initial

wavefunction, but it is irrelevant for the analysis of the eigenmodes as illustrated be-

low for a two-dimensional system. The relative peak intensities, i.e. the contributions

of DOFs i and j to the eigen-mode k are |Tki/Tkj|2. Formally, they are independent

on the chosen wavefunction, though certain peak intensities can be very small due to

the particular choice of the wavefunction.
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Figure 4.3: ⁄(Cxx) as a function of time t for two initial wavefunctions (Table 4.1)
evolving in the Morse potential of Eq. (4.36).

Let us consider a two-dimensional model potential,

V (x, y) = 1
6(x2 ≠4

Ô
2xy≠y2)+ 1

18(x4 ≠4
Ô

2x3y+12x2y2 ≠8
Ô

2xy3 +4y4)≠ 1
8 (4.37)

Fig. (4.4) shows the contour plot of this potential: it is a two-dimensional double

well potential in the transformed coordinates, and the transformation of coordinates

making the Hamiltonian separable is not apparent. To extract the anharmonic mode

information from the quantum correlation functions, we start with an arbitrary chosen

Gaussian wavepacket to compute Cxx, Cxy and Cyy. The final time of propagation

was tf = 160 a.u. Fig. (4.5) shows the FT of Ê⁄(Cµ‹). There are two distinct

collective coordinates for this potential. The three positive peaks centered at the

excitation energy of w = 1 come from the the harmonic collective coordinate. The

corresponding coe�cients of the transformation matrix are found from the ratio of

the peaks,
F [⁄(Cxx)]
F [⁄(Cyy)] = |T11|2

|T12|2
.
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Figure 4.4: A contour plot of the two-dimensional anharmonic potential.

Figure 4.5: The Fourier Transforms of the imaginary parts of Cxx, Cyy and Cxy

(multiplied by w) for the double-well potential as a function of frequency (energy).

After normalization condition is imposed, |T11|2 + |T12|2 = 1, the matrix elements

are: T11 ¥ 0.816, T12 = 0.578. The peaks centered near excitation frequencies w =

{1.2, 1.7, 1.85} all come from the anharmonic collective coordinate, as can be seen

from the ’pattern’ of the peak. The relative contributions from x and y for these

two peaks are the same at the three excitation energies (Table 4.2). The negative

value of the peak in F [⁄(Cxy)] indicates that the contributions from x and y into this

eigenmode are of opposite sign. The corresponding elements of the transformation

matrix deduced from the FTs is in agreement with the analytical values listed in

Table 4.3. The peaks are located at excitation energies for the 0 æ 1, 1 æ 2 and

2 æ 3 transitions of the anharmonic collective coordinate.
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A non-separable model

Finally, we examine a non-separable system by adding a coupling term to the previous

two-dimensional potential. The coupled potential, V c, is

V c = V (x, y) + Áxy, (4.38)

where the parameter Á controls the coupling and V (x, y) is defined by Eq. (4.37).

The analysis of Section 6.2 is no longer exact, however, the main eigenmode features

in the Fourier Transforms of Cxx, Cxy and Cyy persist, at least in the weak coupling

regime. The Fourier Transforms are shown in Fig. 4.6 for the three coupling values,

Á = {0.01, 0.04, 0.08}. The peaks obtained from the three correlation functions line

up at the frequency of the excitation energy as in the uncoupled case. The frequency

positions shift according to the changes of the corresponding eigen-energies of the

coupled systems. In the Figure we use the same labels – H, A, B and C – as for the

peaks of the uncoupled system in Fig. 4.5. In addition we see a new peak D emerging

as the coupling strength increases. We identify this peak as coming from the transition

(1, 0) æ (0, 2), where the pair (nho, ndw) lists the quantum numbers correlating with

the quantum numbers of the harmonic and the anharmonic collective coordinates of

the uncoupled system, respectively. The exact excitation energies, computed as the

di�erence of the appropriate energy levels, corresponding to the peaks in Fig. 4.6 are

listed in Table 4.4. Which peaks in the FT have sizable amplitudes is understood as

follows. The peaks correspond to the transitions between eigenstates contributing to

the correlation functions and, thus, depend on the initial wavefunction. Without the

coupling, the chosen Gaussian initial wavefunction Â0 (labeled ’2D quartic’ in Table

4.1), describes the ground state of the harmonic oscillator mode and has overlap

close to 1 with the ground state of the double-well mode. Due to the structure of

position-position correlation functions – C = È. . . x̂|ÂÍ and so on – these correlation

functions also capture contributions from the first excited state of both modes, and
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in case of the double-mode also from the second and third excited states. Denoting

the eigenfunctions of the Hamiltonian without the mode coupling as „hw
n and „dw

n ,

the non-zero overlaps relevant to the transitions the energy range Ê = [0.9, 2] of Fig.

4.6 are:

ÈÂ|„hw
0 Í = 1 ÈÂ|„dw

0 Í = 0.997 ÈÂ|„dw
1 Í = 0.018

ÈÂ|x|„hw
0 Í = 1 ÈÂ|y|„dw

0 Í = 0.968 ÈÂ|y|„dw
1 Í = 0.181

Without the coupling the transition (1, 0) æ (0, 2) has negligible amplitude as

the quantum number of the double-well mode changes by 2. With the coupling the

modes are no longer separable and the amplitude of the corresponding peak D around

Ê ¥ 1.75 increases with the coupling strength.
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Frequency
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3
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ε = 0.08 

ε = 0.04

ε = 0.01

Figure 4.6: The Fourier Transforms of the imaginary parts of Cxx, Cyy and Cxy for
the coupled anharmonic potential as a function of frequency (energy)

Overall, similar structure of the spectra in Figs 4.5 and 4.6 means that in the
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regime of weak coupling there still is a transformation of coordinates which uncouples

the Hamiltonian in a limited sense or, in other words, minimizes mode coupling at

low energies. Since in the transformed coordinates the e�ects of coupling are shifted

to higher energy, the analysis of position-position correlation functions may still be

useful to identify the low-energy collective modes.

4.4 Conclusion

We have shown that for an anharmonic separable system information about the collec-

tive modes of motion can be extracted from the commutator correlation function given

by the imaginary part of the quantum position-position correlation function. For a

harmonic system the imaginary part (unlike the real part) of the quantum correlation

function is independent of the wavefunction used to obtain the quantum correlation

function. In other words, it contains the information about the Hamiltonian, not

about the specific state of the system. For anharmonic systems, the imaginary part

does depend on a wavefunction whose correlation function is computed. However, the

collective or eigenmodes of the Hamiltonian, are defined by the ratio of intensities in

the FT of the correlation function for each peak which is generally independent on the

wavefunction choice. The relative sign of the contributions from various DOFs can be

found from the cross-correlation functions of the type Èx(0)y(t)Í. The peak positions

give the excitation energies and, therefore, correspond to the peaks in a rovibrational

spectrum, even though the energy levels themselves are not readily obtained from

the FTs of correlation functions alone. The analysis of commutator correlation func-

tions is exact to Hamiltonians that can be made separable by a linear transformation

in a set of linear coordinates, but does not invoke the harmonic approximation of

the potential as does the normal modes analysis. The the commutator-correlation

approach reveals collective modes of anharmonic systems, including those with mul-

tiple minima in the potential energy surface. The approach is also applicable in the
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Table 4.1: The parameters of the initial Gaussian wavepacket Â0 for the model sys-
tems considered. For the two-dimensional systems –1 = –2 © –.

Â0 Model – [a≠2
0 ] x0 [a0] y0 [a0] Model – [a≠2

0 ] x0 [a0] y0 [a0]
1 1D HO 0.5 0.0 1D Morse 0.5 0.0
2 2 -1.6 0.5 -0.5

2D HO 1.0 -1.6 -1.6 2D quartic 0.5 0.0 0.0

Table 4.2: Peak intensities Iµ‹ in the Fourier Transforms of the correlation functions,
F [⁄(Cµ‹)]. The excitation energy of the harmonic mode is labeled H. The three
excitation energies of the double-well mode are labeled A, B and C. Exact excitation
energies are listed in the last column

Peak ÊF T Ixx Iyy Ixy
I

yy

I
xx

I
xy

I
xx

Êexact

H 0.996 2.860 1.433 2.019 0.501 0.707 1.0
A 1.081 0.910 1.815 -1.280 1.995 -1.407 1.088
B 1.663 0.232 0.463 -0.328 1.996 -1.414 1.665
C 1.934 0.0563 0.113 -0.080 2.000 -1.415 1.937

Table 4.3: The transformation matrix elements obtained from the relative peak in-
tensities listed in Table 4.2.

Harmonic mode Anharmonic mode
T11 T12 T21 T22

Numerical 0.816 0.578 0.577 -0.816
Analytical 0.816 0.577 0.577 -0.816

regime of weak mode-coupling, which is the case for most vibrational motions which,

in practice, can be unraveled spectroscopically.

In the presented examples accurate quantum correlation functions have been used,

which will not be a practical strategy for high-dimensional systems. The practical

aspects of the collective mode analysis utilizing the quantum correlation functions for

realistic molecular systems will be examined in the future.
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Table 4.4: Excitation energies for the coupled system (di�erences between the energy levels) for various coupling parameter Á.

(nho, ndw) (0, 0) æ (1, 0) (0, 0) æ (0, 1) (0, 1) æ (0, 2) (0, 2) æ (0, 3) (1, 0) æ (0, 2)
Á peak H peak A peak B peak C peak D
0 1.000 1.088 1.665 1.937 1.7531

0.01 1.005 1.086 1.663 1.936 1.7443
0.04 1.018 1.078 1.658 1.931 1.7185
0.08 1.032 1.071 1.649 1.925 1.6876
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Chapter 5

Symmetrization of the nuclear wavefunctions

defined by the quantum trajectory dynamics.

n a rigorous quantum-mechanical (QM) description of indistinguishable particles the

correct symmetry is often built-in into the form of an approximate wavefunction, with

the electronic wavefunctions constructed as the Slater determinants of the single-

particle functions being the prime example. In contrast, when evaluating QM e�ects

for the nuclei, often described by approximate wavefunctions of full dimensionality,

the wavefunction symmetry can be included directly into calculation of expectation

values. The straightforward implementation, however, may be impractical for a large

system due to factorial scaling of particle permutations. In this work the leading cor-

rection due to the wavefunction symmetrization within the quantum trajectory (QT)

framework is presented. The correction is based on the non-symmetrized wavefunc-

tion evolved using QT dynamics with empirical friction, yielding the lowest energy

states. Use of symmetry improves the accuracy and e�ciency of this dynamics ap-

proach as shown on model systems of up to four dimensions.

5.1 Introduction

This work is motivated by a recent study of determining the ground state of solid

He4 using the approximate quantum trajectory (QT) dynamics with friction [43].

The system was represented within a simulation cell of 180 atoms; all nuclei were

treated as quantum particles, but the Bose-Einstein statistics of the nuclei has not
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been taken into account. While the e�ect of quantum statistics in this system may

be small, though of interest in light of recent experiments [? ? ? ? ? ? ], a practical

approach to wavefunction symmetrization is desirable for generality of the QT-based

dynamics and is essential for its possible extensions to dynamics of electrons.

The QT ensemble is a representation of a wavefunction evolving in time according

to the time-dependent Schrödinger equation,

ĤÂ = ı~ ˆ

ˆt
Â, (5.1)

with the usual QM Hamiltonian,

Ĥ = K̂ + V, K̂ = ≠ ~2

2m
Ò2. (5.2)

For simplicity, all particles are considered identical of mass m, and the atomic units,

i. e. ~ = 1, are used henceforth. The arguments of functions are suppressed when

unambiguous. Bold face variables denote vectors. The vector x is a vector of all the

particle coordinates; Ò is the vector of the spatial partial derivatives. The small case

Â denotes a wavefunction Â © Â(x, t) of no particular symmetry, while the capital �

will be used for the symmetrized functions. An external classical potential V © V (x)

is symmetric with respect to any permutation of the particles.

The complex wavefunction can be written in polar form in terms of the amplitude

and phase,

Â(x, t) = |Â(x, t)| exp(ıS(x, t)). (5.3)

The quantum or Bohmian trajectories are defined by the following relation between

their momenta and the wavefunction phase S(x, t) [7],

p = ÒS. (5.4)

As follows from the TDSE (5.1), the time-evolution of the phase is given by the

quantum Hamilton-Jacobi equation,

≠ˆS

ˆt
= p · p

2m
+ V + U, (5.5)
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where U is the quantum potential,

U © U(x, t) = ≠ Ò2|Â|
2m|Â| . (5.6)

The QT positions, xt, and momenta, pt, evolve in time under the influence of the

combined potential V +U , according to the usual Newton’s equations of motion (see,

for example, Ref. [93] for full details):

dxt

dt
= pt

m
,

dpt

dt
= ≠Ò(V + U)|x=x

t

. (5.7)

The time-evolution of the probability density |Â|2 satisfies the continuity equation.

A useful consequence of that is conservation in time of the trajectory ’weight’, w(xt),

which is a probability of finding a particle within the associated volume element ”xt,

w(xt) © |Â(x, t)|2”xt = |Â(x, 0)|2”x0. (5.8)

The quantum potential describes contribution to the kinetic energy due to the

wavefunction localization, and the combined potential U + V guides the motion of

the QTs. Thus, in the QT framework all QM e�ects are formally attributed to the

e�ect of the quantum potential. Therefore, the idea of including the e�ect of quantum

statistics, i. e. of the wavefunction symmetry, through an additional potential is

appealing. Such a potential, termed the Pauli potential, has been introduced in

nuclear physics [? ].

The Pauli potential arises from the symmetrized form of a wavefunction describing

identical particles [4], and is interpreted as a correction to the kinetic energy operator.

(To simplify notations we will consider one-dimensional particles described by the

Cartesian coordinates (x, y) until Section 6.2.) In the case of two fermions, each

described by a single-particle function, specifically by a one-dimensional Gaussian

function,

ga(x) = exp
3

≠–

2 (x ≠ qa)2 + ıpa(x ≠ qa)
4 3

–

fi

41/4
, (5.9)
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the two-dimensional wavefunction Â(x, y) written as the Slater determinant is:

�g(x, y) = N (ga(x)gb(y) ≠ gb(x)ga(y)), N = È|ga(x)gb(y) ≠ gb(x)ga(y)|2Í≠1/2
.

(5.10)

The kinetic energy of the particles described by the wavefunction (5.10) becomes:

K̂g = p2
a + p2

b

2m
+ –

2m
+ P̄ , (5.11)

where the last right-hand-side (RHS) term P̄ labels the Pauli potential. The first term

in the RHS of Eq. (5.11) is the classical kinetic energy of the Gaussian centers. The

middle term can be identified with the expectation value of the quantum potential of

Eq. (5.6) for the two-dimensional, i. e. two-particle, system,

È�g|U |�gÍ = –

2m
. (5.12)

The Pauli potential is defined as:

P̄ = –

2m

Xab

exp(Xab) ≠ 1 , (5.13)

where the quantity Xab is the phase space distance between the two particles:

Xab = 1
2

1
–(qa ≠ qb)2 + (pa ≠ pb)2/–

2
. (5.14)

The Gaussian parameters {pa, pb, qa, qb} are, generally, functions of time, which evolve

classically in many popular Gaussian-based methods, such as Thawed and Frozen

Gaussian Wavepacket Dynamics [48, 49, 51] and numerous other approaches. Intu-

itively, with the symmetry these parameters are expected to evolve classically under

the influence of P̄ + V , with P̄ preventing the fermions to be close to each other

in the phase space. However, as shown in Ref. [? ], such classical treatment is,

generally, incorrect and a time-dependent variational principle with constraints is

employed in more rigorous methods such as Fermionic Molecular Dynamics (FMD)

and Antisymmetrized MD (AMD) [? ? ? ? ? ].
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Extending the idea of the Pauli potential to the QTs, whose dynamics is mod-

ified by the potential-like term generating QM e�ects, seems promising. However,

we note that the Pauli potential P̄ in Eq. (5.13) comes from the constrained form

of the two-dimensional wavefunction �g(x, y) of Eq. (5.10). In contrast, the QT

formulation of the TDSE is exact. The resulting from it quantum potential U (ig-

noring singularities in U for the moment) arises from the polar form of an arbitrary

wavefunction. Thus, without the single-particle function approximation no modifi-

cations of the Hamiltonian are needed to evolve the full-dimensional wavefunction

(regardless of its approximate form). This conclusion is consistent with the analysis

of the semiclassical electron dynamics based on Gaussian wavepackets [? ]. The

symmetry of the full-dimensional wavefunction can be incorporated explicitly into (i)

the initial wavefunction or into (ii) computation of the desired dynamical properties,

such as expectation values and correlation functions. For example, if the property

is the lowest energy state of a specific symmetry, which can be obtained either from

imaginary-time [72? ] or dissipative dynamics [35], then, both options will accelerate

convergence with time. In fact, we have constructed the Pauli-type potential from

the symmetrized wavefunction ’on-the-fly’ and implemented it in imaginary time.

However, we found that this modification introduced instability into dynamics and

did not o�er computational benefits compared to option (ii).

In the remainder of the paper we illustrate the symmetrization e�ect on simple

models for the imaginary-time and dissipative dynamics (Section 5.2), and describe a

practical algorithm of estimating the symmetry e�ect within the quantum trajectory

dynamics for multidimensional systems (Sections 6.2 and 5.4). Section 5.5 o�ers

conclusions and outlook.
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5.2 Effect of the wavefunction symmetry on the lowest energy states.

The imaginary-time dynamics (relaxation)

The imaginary-time QM evolution, introduced into molecular dynamics by Miller [72]

and used to simulate temperature e�ects or to obtain low energy states [? ], is defined

by the TDSE restated for imaginary time,

ĤÂ = ≠Â

t
. (5.15)

Any initial wavefunction evolves into the lowest energy state (of a certain symmetry if

present) at long times, as seen from the expansion of the time-dependent wavefunction

in terms of the energy eigenstates, Ĥ„n = En„n for n = {0, 1, . . . },

Â(x, y, t) =
ÿ

n

cn„n(x, y)e≠E
n

t and cn = È„n(x, y)|Â(x, y, 0)Í. (5.16)

The wavefunction norm depends on time; to avoid exponential growth of the wave-

function norm, the energy scale is shifted so that E0 > 0. As t æ Œ, a wavefunction

of initially undefined symmetry approaches the ground state (unless it was orthogonal

to it),

Â(x, y, t) æ c0„0(x, y)e≠E0t, Et © ÈÂ|Ĥ|ÂÍt æ E0 ÈÂ|ÂÍt . (5.17)

The low-lying excited states, can be obtained from the imaginary time dynamics by

removing the ground state from Â(x, y, t) by projection as done, for example, in Refs

[? 23].

For a system of identical particles using the symmetry of the eigenstates under

particle permutations,

„n(y, x) = (≠1)n„n(x, y), (5.18)

one can construct explicitly symmetrized wavefunctions,

�s/a(x, y, t) =
ÿ

n=0,1...

cn („n(x, y) ± „n(y, x)) e≠E
n

t. (5.19)
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The ground and the first excited states are the lowest energy states for the symmetric

and antisymmetric functions, respectively. As t æ Œ, the symmetrized wavefunctions

converge to their respective lowest energy states faster than a function of undefined

symmetry due to cancellation of contributions from the states closest in energy:

�s(x, y, t) æ 2c0„0e
≠E0t, �a(x, y, t) æ 2c1„1e

≠E1t. (5.20)

The convergence with time in Eqs (5.20) is fast if the lowest pair of states is well

separated from the higher energy states, E2 ≠ E1 ∫ E1 ≠ E0.

This point is illustrated for a two-dimensional model of Hooke’s atom with the

following electron-electron repulsion,

V (x, y) = x2 + y2

2 + c(|x ≠ y| ≠ r0)2 + V0. (5.21)

The parameter values are listed in Table 5.1 and the electron mass is m = 1 in atomic

units. The propagation is performed on the equidistant grid using the split-operator

method and the Fast Fourier Transform [59, 21] as listed in Table 5.1. The initial

non-symmetrized wavefunction Â(x, y, 0) is a correlated two-dimensional Gaussian,

Â(x, y, 0) = N exp(≠–(x ≠ q0)2 ≠ –(y + q0)2 ≠ 2—(x ≠ q0)(y + q0)). (5.22)

The wavefunction parameters are given in Table 5.1. The initial wavefunction is

real and is localized in the left well of the potential. Panels (a-c) of Fig. 5.1 show

footprints of the evolving non-symmetrized wavefunction, at times t = {0, 0.8, 1.0}

a.u. Panel (d) shows the energy computed for the non-symmetrized wavefunction and

for the generated from it symmetric and antisymmetric wavefunctions �s/a(x, y, t) as

a function of time,

�s/a = Ns/a(Â(x, y, t) ± Â(y, x, t)), (5.23)

where Ns/a normalizes wavefunctions to 1. The energies of �s/a converge to their

respective lowest energy values much sooner than the energy of Â(x, y, t): at t = 0.75

65



www.manaraa.com

a.u. the energies of �s/a are converged within five digits, while the energy of Â(x, y, t)

is far from converging to E0 at t = 2.0 a.u. as shown in Table 5.2. Shorter imaginary-

time propagation is desirable even for exact QM methods, because the wavefunction

norm exponentially decays with time which may results in the loss of numerical

accuracy.
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Figure 5.1: Imaginary time evolution in the two-dimensional double well. A footprint
of a nonsymmetrized wavefunction for t = {0, 0.8, 2.0} a.u. is shown on panels (a-c),
respectively. The energies as functions of time for the non-symmetrized Â(t) and
constructed from symmetric and antisymmetric wavefunctions are shown on panel
(d) as black solid line, red dash and blue dot-dash, respectively.
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Table 5.1: Parameters defining the two-dimensional double-well model and calcula-
tion of Section 5.2. The upper line lists the parameter values for the potential given
by Eq. 5.21. The middle line defines the initial wavefunction Â(x, y, 0). The bottom
line lists parameters of the QM propagation: Np is the number of grid points per
dimension; the grid is symmetric and xmin specifies its left boundary. All values are
given in atomic units.

Potential V c = 4 r0 = 2 V0 = 2
Wavefunction q0 = ≠0.888 – = 1 — = ≠0.5
QM evolution dt = 0.002 Np = 256 xmin = ≠5

Table 5.2: Time-dependence of the energy for the non-symmetrized, symmetric and
antisymmetric wavefunctions.

Time [a.u.] E [Eh] Es [Eh] Ea [Eh]
0.0 1.9982 1.9662 2.0308
0.8 1.9944 1.9636 2.0291
1.2 1.9935 1.9636 2.0291
2.0 1.9918 1.9636 2.0291

Quantum dynamics with friction (dissipation)

An alternative way of obtaining the lowest energy states is the dissipative quantum

dynamics, in which the system looses energy via an empirical friction [35]. This

formulation is well-suited for the trajectory-based dynamics methods as elaborated in

Section 6.2. Here we only illustrate the e�ect of symmetry on the Gaussian dynamics

in one dimension.

The energy dissipation is introduced into the conventional real-time TDSE via a

non-linear term, dependent on the phase of the wavefunction S, and this empirical

friction is controlled by the coe�cient “:

ı
ˆ

ˆt
Â = ĤÂ + “ (S ≠ ÈSÍ) Â, . (5.24)

The system looses energy due to friction force until the lowest energy state is reached,

dE

dt
= ≠ “

m
ÈÂ|(ÒS)2|ÂÍ. (5.25)

The physical meaning of the dissipation term is transparent from the time-evolution
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equations for QTs, following from Eq. (5.24):

dS

dt
= p · p

2m
≠V ≠U ≠“(S ≠ÈSÍ), dxt

dt
= pt

m
,

dpt

dt
= ≠Ò(V +U)|x=x

t

≠“p. (5.26)

The dissipative term generates the friction force on QTs which is linear in velocity of

a particle. The e�ect of friction vanishes once Â evolved into an eigenstate, which is

real up to an overall phase factor, because dissipation in Eq. (5.24) is defined with

respect to the average phase of the wavefunction.

Unlike the imaginary-time dynamics, the dissipative TDSE is nonlinear and the

eigenstate analysis is complicated. However, since the friction term is of the same spa-

tial symmetry as the wavefunction itself, the e�ect of the wavefunction symmetriza-

tion on the ground state calculations is similar to the imaginary-time dynamics. The

illustration below is given for a one-dimensional quadratic potential and the symme-

try operation x æ ≠x. Consider dynamics with friction of a non-coherent Gaussian,

describing a particle of m = 1 a.u.,

Â(x, t) = exp(≠–(t)(x ≠ q(t))2 + ıp(t)(x ≠ q(t)) + ıs(t) + n(t)), (5.27)

in a quadratic potential of frequency Ê, V = Ê2x2/2. Substitution of Eq. (5.27) into

Eq. (5.24) determines the time-dependence of the parameters {–, q, p, s, n}. Using

– = –r + ı–i and suppressing argument t, the evolution equations are as follows. The

center of the Gaussian q moves classically under the influence of the friction force

Ffr = ≠“p:
dq

dt
= p,

dp

dt
= ≠Ê2q ≠ “p. (5.28)

The action function s has classical, quantum and friction contributions:

ds

dt
= p2 ≠ Ê2q2

2 ≠ –r ≠ “

4
–i

–r
. (5.29)

Parameter n normalizes the wavefunction:

dn

dt
= 1

4–r

d–r

dt
= –i. (5.30)
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The width parameter – evolves according to

ı
d–

dt
= 2–2 ≠ Ê2

2 + “–i. (5.31)

Eq. (5.31) can be decomposed into real and imaginary parts, and is solvable ana-

lytically in the absence of friction, “ = 0. For the quadratic well, Ê2 > 0, there is

a special solution (coherent Gaussian) –c = Ê/2 at all times, regardless of friction.

Generally, with time the width parameter converges to – = Ê/2 for the quadratic

well, and to – = 0 in free space, Ê = 0, or for the parabolic barrier, Ê2 < 0. Beyond

the short times the convergence with time becomes exponential and the value of the

exponent is inversely proportional to “.

The e�ect of the wavefunction symmetrization is illustrated in Figs 5.2 and 5.3

for the value of Ê = 1. The symmetrized functions are simply constructed as

�s/a(x, t) = Ns/a (Â(x, t) ± Â(≠x, t)) , (5.32)

where Ns/a is the time-dependent normalization constant. The initial wavefunction

is a non-coherent Gaussian shifted from the bottom of the well: –(0) = 2.0 a≠2
0 ,

q(0) = 1.0 a0, p(0) = 0. The wavefunction parameters are propagated in time nu-

merically according to Eqs (5.28–5.31) and are shown in Fig. 5.2 for several values of

the friction coe�cient “ = {0, 1, 2, 4}. The symmetrized wavefunctions, constructed

from evolving in time Â, are projected onto the ground and the first excited en-

ergy eigenstates, respectively. The parameters of Â of Eq. (5.27) converge to the

ground state values faster for the larger values of “, though larger “ is not necessar-

ily advantageous for numerical considerations as it requires smaller time-step. The

projections, cn = ÈÂ|„nÍ, show similar behavior in time. The projections of �s/a and

Â for “ = 4 onto the lowest energy eigenstates are shown in Fig. 5.3. The sym-

metrized wavefunctions converge to their respective lowest energy states noticeably

faster than the non-symmetrized function. (The non-symmetrized function converges

to the ground state n = 0, of course, but at short times it has non-zero projections
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on multiple eigenstates.) The projections onto the second highest energy eigenstate

of appropriate symmetry are also shown to illustrate the convergence properties.

Thus, we conclude that the symmetrization of the wavefunction, when evaluating

expectation values and other properties, is compatible with the non-linear TDSE with

friction and reduces propagation time. This should benefit calculations in general

multidimensional systems, provided the symmetrization procedure can be performed

e�ciently. Such a procedure, which includes the leading correction on the expectation

values due to particle permutations within the QT-based dynamics, is presented in

the next section.

Figure 5.2: Dynamics with friction in the quadratic well. The center, q(t), and the
width parameter, –r(t), of the Gaussian wavefunction as a function of time t are
shown on panels (a) and (b). The absolute values of the projections of the sym-
metrized/antisymmetrized functions �s/a onto the ground and first excited eigen-
states „0 and „1 are shown on panels (c) and (d), respectively. The friction coe�cient
is shown on the legend (the same for all panels).
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Figure 5.3: Dynamics with friction in the quadratic well. The absolute values of the
projections of the symmetrized/antisymmetrized functions onto the eigenstates of the
two lowest energy eigenstates of the appropriate symmetry. The quantum number
and type of the wavefunction are shown on the legend.

5.3 Theory

In this section we describe a formalism of evaluating the leading correction to ex-

pectation values due to the wavefunction symmetrization compatible with the QT

representation of a time-dependent full-dimensional wavefunction. In particular, in

the Approximate Quantum Potential (AQP) approach [30, 31] the ’quantum’ at-

tribute of a trajectory, used to construct approximations to the quantum potential

and to reconstruct a wavefunction itself, is the so-called non-classical momentum r,

defined as

r = Ò|Â|
|Â| . (5.33)

The formalism presented in this Section utilizes the non-classical momentum, which

in principle can be constructed from a wavefunction evolved in time with any QM

method, including the imaginary time dynamics.
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Formalism

In the following, we define a “configuration” as a wavefunction or a part of the

wavefunction for which the list of all particle variables can be ordered, such as

Â © Â(R1, R2 · · · , · · · , RN), (5.34)

where Rj labels position of the jth particle (j = [1, N ]) in Cartesian space. Examples

of configurations in the above definition are full solutions of the Schrödinger equation

in coordinate space, an individual Slater determinant made of one-particle orbitals, a

single product of one-electron orbitals, a quantum trajectory, or an ensemble of trajec-

tories. Next, we act on a configuration by a permutation operator that interchanges

one or more pairs of particles

P̂ijÂ(· · · , Ri, · · · , Rj, · · · ) = Â(· · · , Rj, · · · , Ri, · · · ). (5.35)

Note that the permutation operator is unitary

P̂ † = P̂ ≠1. (5.36)

The permuted wavefunction may or may not be identical to the original one. In

further formalism development and in applications we will mostly focus on the case

of permuted wavefunctions having small overlap with the original one. This is realized

when individual particles in a configuration are localized in di�erent spatial regions.

For a system of indistinguishable particles the lowest energy state wavefunction

�s/a is also the eigenstate of the permutation operator exchanging any two particles,

P̂ij�s/a = ±�s/a

with Õ±Õ signs describing the bosons/fermions. Henceforth, for convenience we will

refer to symmetric wavefunction of N nuclei described in Cartesian space, though the

approach is applicable to any symmetry or particles.
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Now it is convenient to define one “reference” configuration with the sequentially

ordered list of variables labeled 0:

Â0 = Â(R01, R02 · · · , · · · , R0N≠1, R0N). (5.37)

Other configurations and the permutation operators generating them from the ref-

erence configuration will be labeled as Â“ = P̂“Â0, where “ enumerates sequences of

the particles specified by the second subscript j = {1, 2, · · · , N},

Â“ © Â(R“1 , R“2 , . . . , R“
N

). (5.38)

For a system of N particles there are N ! unique sequences “. Note that the product

of any two permutation operators is a permutation operator, P̂“P̂“Õ = P̂“ÕÕ . It is

convenient to classify permutation operators by the minimum number of permuted

particles, such as two particle P̂ij, three particle P̂ij,jk = P̂ijP̂jk, linked and unlinked

four particle P̂ij,jk,il and P̂ij,kl, etc.

The symmetrized wavefunction of N particles is written as

�s = N
ÿ

“

Â“, (5.39)

where N is the overall normalization constant of the symmetrized wavefunction.

The expectation value of any operator Ô is given by

Ō = È�s|Ô|�sÍ = N 2 ÿ

“,“Õ
ÈÂ“|Ô|Â“ÕÍ . (5.40)

We will consider the local or semi-local operator Ô, invariant under any permutation,

i.e.

[Ô, P̂“] = 0. (5.41)

Then,

ÈÂ“|Ô|Â“Í = ÈP̂“Â0|Ô|P̂“Â0Í = ÈÂ0|P̂ †
“ ÔP̂“|Â0Í = ÈÂ0|ÔP̂ ≠1

“ P̂“|Â0Í = ÈÂ0|Ô|Â0Í .

(5.42)
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With the above property, Eq. (5.40) becomes,

È�s|Ô|�sÍ =N 2

Q

a
ÿ

“

ÈÂ“|Ô|Â“Í +
ÿ

“,“Õ ”=“

ÈÂ“|Ô|Â“ÕÍ
R

b

=N 2

Q

aN ! ÈÂ0|Ô|Â0Í + ÈÂ0|Ô|
ÿ

“,“Õ ”=“

P̂ ≠1
“ P̂“ÕÂ0Í

R

b . (5.43)

The first term of the last equality in Eq. (5.43) is simplified since the total number

of arrangements of N enumerated particles is N ! . The last term can be separated

according to the number of particle permutations in P̂ ≠1
“ P̂“Õ as

ÈÂ0|Ô|
ÿ

“,“Õ ”=“

P̂ ≠1
“ P̂“ÕÂ0Í = N !

2 ÈÂ0|Ô|
ÿ

i”=j

P̂ijÂ0Í+ N !
3 ÈÂ0|Ô|

ÿ

i”=j ”=k

P̂ij,ikÂ0Í+· · · (5.44)

This sequence should rapidly converge for the local or semi-local operators Ô evalu-

ated over wavefunctions describing particles su�ciently localized in di�erent regions

of space. In this case Eq. (5.44) is dominated by the leading terms, yielding

Ō = N 2N ! ÈÂ0|Ô
Q

a1 +
ÿ

i>j

P̂ij

R

b |Â0Í . (5.45)

Setting Ô = 1 determines the normalization constant of the symmetrized wavefunc-

tion,

N ≠2 = N !
Q

a1 +
ÿ

i>j

ÈÂ0|P̂ijÂ0Í
R

b . (5.46)

Thus, our working expression for an expectation value in the first-order approxi-

mation due to symmetrization is

Ō = ÈÂ0|Ô|Â0Í + ÈÂ0|Ô| q
i>j P̂ijÂ0Í

1 + ÈÂ0|
q

i>j P̂ij|Â0Í
. (5.47)

Implementation in the QT framework

The potential energy operator in coordinate space is local and is straightforwardly

computed using Eq. (5.47). The kinetic energy operator involving derivatives is

semi-local,

K̂ =
ÿ

k,‡

≠ ~2

2mk
Ò2

k‡,
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where mk is the mass for kth particle; ‡ = {x, y, z} labels the Cartesian axes. To

compute the expectation of the kinetic energy in the QT formulation we use the

nonclassical momentum r of the reference wavefunction Â0 as defined in Eq. (5.33).

Each component of the vector is labeled by the subscript k‡. The e�ect of permuting

Â0 is expressed by the function ‰ij,

‰ij © Â≠1
0 P̂ijÂ0. (5.48)

Then the normalization is expressed as,

N ≠2 = 1 +
ÿ

i>j

ÈÂ0|‰ij|Â0Í . (5.49)

and the kinetic energy is given by

ÈKÍ = N 2 ÿ

k,‡

1
2mk

Q

aÈÂ0|r2
k

‡

|Â0Í +
ÿ

i>j

1
ÈÂ0|r2

k
‡

‰ij|Â0Í + ÈÂ0|rk
‡

Òk
‡

‰ij|Â0Í
2

R

b ,

(5.50)

where k labels nuclei, ‡ labels Cartesian components of each nuclei, i and j label the

exchanged particles.

Considering systems with well-separated local energy minima, the overlap between

the reference wavefunction Â0 and the permuted wavefunction ‰ijÂ0 strongly depends

on the spatial distance of the exchanged particles and, in the simplest form, only the

near-neighbor permutations can be considered in summation over i, j in Eq. (5.50).

If all atoms are within the same chemical environment (for instance atomic solid),

then all the near-neighbor matrix elements of the type ÈÂ0| . . . ‰ij|Â0Í are the same

and we only have to compute one element for each term in Eq. (5.50),

Oij = ÈÂ0|Ô‰12|Â0Í . (5.51)

The ground state calculations using the approximate QT dynamics with friction

are described in Ref. [? ] and the approach itself is not repeated here. The important

result is that the quantum correction on dynamics is obtained by expanding the
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non-classical momentum in the Taylor basis. Each component rk‡ is fit by a cubic

polynomial in (x, y, z) coordinates of kth particle and by a monomial with respect

to the coordinates of all other particles. The matrix elements of Eq. (5.51) can be

related to the non-classical momentum already available from the approximate QT

dynamics through

Òk
‡

Qij = P̂ijrk
‡

≠ rk
‡

, Qij © ln ‰ij, (5.52)

as described in Section 5.4.

The expectation value of potential energy is:

ÈV Í = N 2

Q

aÈÂ0|V |Â0Í +
ÿ

i>j

ÈÂ0|V ‰ij|Â0Í
R

b , (5.53)

where N is defined by Eq. (5.49). The summation over j in Eqs (5.49), (5.50) and

(5.53) includes just the near-neighbor particles. The ’near-neighbor’ lists will depend

on specific systems and interactions. For the ground state calculations, the lists can

be precomputed and stored for each particle, since the particles are not expected to

exhibit large amplitude motion, provided a reasonable initial wavefunction.

5.4 Models and implementation

In principle, an evolving non-symmetrized wavefunction Â(x, t) can be used to esti-

mate the ground state energy at any finite time t, whether during the imaginary or

dissipative dynamics, as long as Â has some extend into the barrier region separating

equivalent minima of the potential, as illustrated in Section 5.2. In the QT imple-

mentation, any observables can be simply computed by the summation over the QT

ensemble of Ntraj trajectories discretizing the initial wavefunction,

ÈÔÍ =
N

trajÿ

i=1
O(xi)wi, (5.54)

where the trajectory weight is defined in Eq. (5.8). However for the permutation

operator, Ô = P̂ , the contribution to the integral comes from the barrier region, while,
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generally, only small fraction of QTs will end up there. Therefore, such integrals

are performed by Monte Carlo as described in Section 5.4, followed by the model

applications of Section 5.4.

Evaluation of integrals involving particle permutations

To start a QT simulation an initial wavefunction, often of the Gaussian form, is rep-

resented in terms of the QT ensemble. The trajectory positions are chosen randomly

using normal deviates [76]. All average quantities needed to evolve the QTs are com-

puted according to Eq. (5.54). To e�ciently evaluate expectation values involving

particle permutations of Eq. (5.51), which is needed to analyze – not to perform – the

dynamics, we re-sample the probability density |Â|2 in the barrier region using Monte

Carlo techniques. The approximate analytical function for the probability density is

available (up to a normalization constant) from the fitted nonclassical momentum.

The non-linear approximation to r [? ] is given in Appendix 5.6 for completeness,

rµ ¥ aµ +
ÿ

‹

bµ‹x‹ + cµx2
µ + dµx3

µ, (5.55)

where µ labels the degrees of freedom (DOF), µ = [1, f ], and represent the two

indices of atoms in three-dimensional Cartesian space, µ © k‡. Eq. (5.55) yields the

following unnormalized approximate wavefunction amplitude:

|Ẫ0| = exp
Q

a
fÿ

µ=1

A

aµxµ + bµµ

2 x2
µ + cµ

3 x3
µ + dµ

4 x4
µ

B

+ 1
2

ÿ

µ ”=‹

bµ‹xµx‹

R

b . (5.56)

The normalization constant for Ẫ0 can be obtained by straightforward Monte Carlo

evaluation of È|Ẫ0|2Í but it is not required, since this constant cancels in the expression

for the wavefunction energy,

E =
ÈẪ0|

q
µ

r2
µ

2m
µ

(1 + eQ) + q
µ

r
µ

Ò
µ

Q
2m

µ

eQ + V (x)(1 + eQ)|Â0Í
ÈẪ0|1 + eQ|Ẫ0Í

. (5.57)
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For simplicity we have dropped the explicit spacial and temporal dependence. All

the necessary quantities in Eq. (5.57) can be written as

ÈOÍ =
⁄ Œ

≠Œ
O(x)P(x) dfx

with the probability function for the Monte Carlo integration, P(x) = |Ẫ0|2/ È|Ẫ0|2Í .

We use the Metropolis algorithm to sample P(x), as it is based on the relative prob-

abilities, P(x)/P(xÕ). Therefore, the normalization constant is not needed and just

the barrier region is sampled to evaluate Eq. (5.57). In the numerical implementa-

tion of the Metropolis sampling, initially Nw walkers are randomly chosen. Then, the

Metropolis algorithm is used to update the position of each walker; 20% of the total

Monte Carlo steps is used to thermalize the walkers.

Implementation and examples

To illustrate the QT-based symmetry, or particle exchanges, correction and its range

of validity, we consider three and four-dimensional models, for which the exact ground

state energies were obtained using imaginary time dynamics on a grid using the split-

operator method/Fast Fourier Transform [59, 21]. The potential energy V includes

pairwise interactions and a quadratic in x term holding the center of mass of a system

at zero:

V (x) = K

2 x2
cm +

ÿ

i,j>i

k

2((|xi ≠ xj| ≠ R0)2, xcm =
ÿ

i

xi/N (5.58)

The models represent a chain of one-dimensional atoms kept at R0 distance apart by

harmonic springs. The analytical form of Q defined by Eq. (5.52) is:

Qij(x) =
Nÿ

k=1
�aij(xj ≠ xi) +

ÿ

k ”=i,j

(bik ≠ bjk)(xj ≠ xi)xk

+ bii ≠ bjj

2 (x2
j ≠ x2

i ) + �cij

3 (x3
j ≠ x3

i ) + �dij

4 (x4
j ≠ x4

i ) (5.59)

where �hij = hi ≠ hj, h = {a, b, c, d}. The kinetic energy simplifies to

ÈKÍ = N 2

2m

A

ÈÂ0|
ÿ

µ

r2
µ|Â0Í + n ÈÂ0|

ÿ

µ

r2
µ‰12|Â0Í + n ÈÂ0|

ÿ

µ

rµÒµ‰12|Â0Í
B

(5.60)
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where n is the number of nearest-neighbor permutations we have to consider. The

first and second terms in Eq. (5.60) are simply related to the fitted form of r(x).

The analytical form for the third term containing Òµ‰12 = eQ12(x)ÒµQ12(x) is:

ÒµQ12 =

Y
________]

________[

≠�a12 ≠ (b11 ≠ b22)x1 ≠ �c12x2
1 ≠ �d12x3

1,

�a12 + (b11 ≠ b22)x2 + �c12x2
2 ≠ �d12x3

2,

(b1µ ≠ b2µ)(x2 ≠ x1), µ Ø 3

(5.61)

The parameters of the models are given in Table 5.3 and details of the QT dynamics

and sampling are given in Table 5.4.

For N = 3 atoms the equilibrium geometry is x0 = (≠2R0
3 , 0, 2R0

3 ) and its permu-

tations, yielding a total of 3! = 6 minima of the potential energy. Figure 5.4 shows

the computed energy values in comparison with the QM results and wit the normal

modes value. (The latter does not depend on R0.) Clearly, the exchange e�ect low-

ers the energy value computed without the permutational symmetry. The exchange

increases the uncertainty in the position space and decreases the uncertainty in the

momentum space, which lowers the kinetic energy. There is a slight increase in the

potential energy due to exchange, since there is more probability density in the bar-

rier region. From the figure, it is clear that the exchange e�ect gives a noticeable

contribution to the ground state energy at R0 < 5 a0. The ground state energies

with exchange corrections are in good agreement for R0 = [2.4, 5.0] a0. Even when

R0 = 2 a0, the exchange correction still captures significant portion of the energy de-

crease. At short inter-particle distance the nearest-neighbor approximation is poor as

expected. For example, within the nearest-neighbor approximation the denominator

of Eq. (5.47) the summation over permutations is:

ÿ

i”=j

ÈÂ0|Pij|Â0Í = 2 ÈÂ0|P12|Â0Í + ÈÂ0|P13|Â0Í ¥ 2 ÈÂ0|P12|Â0Í

The inter-particle distance (atom 1 and 2) is 2
3R0; for R0 = 1.0 a0 the expectation
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Table 5.3: Parameters for the model systems.

Model, N K [Eh · a≠2
0 ] k [Eh · a≠2

0 ] R0 [a0] m [a.u.]
3 10 1 [1.0, 5.0] 1
4 16 1 [1.0, 5.0] 1

Table 5.4: Parameters for quantum trajectory dynamics simulation and Monte Carlo
computation. Nt is the number of time steps; Ntraj is the number of trajectories; “
is the friction constant; dt is the time step. For the Monte Carlo integration: Nw is
number of walkers; Nm is the number of Monte Carlo steps; Nth is the number of
thermalization steps.

Model, N Ntraj dt [a.u.] Nt “ [a.u.] Nw Nm Nth/Nm

3 & 4 12800 0.001 4000 8 20 106 20%

value is ÈP12Í ¥ 0.68. The distance between atoms 1 and 3 is 4
3R0, thus the contri-

bution due to permutation of atoms 1 and 3 should not be ignored.

For the case of N = 4 atoms, the nearest-neighbor inter-particle distance is R0/2

(and the next nearest distance is R0). The trends in the ground state energy and

accuracy are similar to the three-dimensional case as shown in Fig. 5.5. The exact

QM calculations are limited to short distances due to the size of the required four-

dimensional grid. For a condensed phase system with periodic boundary conditions

a general setup of computing the exchange corrections is outlined in Appendix 5.7.

5.5 Discussion and summary

We have formulated an estimate of the permutational symmetry (exchange) e�ects

for a quantum system consisting of indistinguishable particles. The estimate in-

cludes only two-particle permutations in the nearest-neighbor approximation, i. e.

exchanges of the neighboring atoms. For a crystal structure, it means considering

just the first shell. As has been demonstrated for the three- and four-particle models,

the exchange correction is accurate in the regime of ÈÂ0|P̂ij|Â0Í π 1, and may even

give a useful estimate beyond this regime.
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Figure 5.4: The ground-state energy for the three-particle model system as a function
of the equilibrium distance. Red dash shows estimates obtained from the approximate
QT dynamics and black solid line gives the exact values. The results approach the
normal modes value at large R0.

To make the estimates numerically more e�cient we have implemented the "impor-

tance" sampling of the barrier regions (between the equivalent minima) which avoids

explicit calculation of the wavefunction normalization (which would scale quadrati-

cally with the number of the Monte Carlo points). This allowed us to use the normal

deviates sampling of the initial wavefunction with QT positions as needed for the QT

dynamics. Further improvement of the Monte Carlo integration in the barrier region

can be achieved if the probability function P(x) is sampled over the barrier region

instead over the “local” solution Â0, in which case the integration becomes,
⁄ Œ

≠Œ
eQ(x)|Â0|2 dfx =

⁄ Œ

≠Œ
eQ(x)|Â0|2P≠1(x)P(x) dfx =

N
sÿ

k=1
eQ(x(k))P≠1(x(k))

In this case, Â0 has to be normalized explicitly which can be accomplished by sam-

pling the probability density function, P0(x), taken for convenience to be a mul-

tivariate normal sampling after ignoring the higher-order terms in the exponent of
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Figure 5.5: The ground-state energy for the four-particle model system as a function
of the equilibrium distance. Red dash shows estimates obtained from the approximate
QT dynamics and black solid line gives the exact values. The estimates approach the
normal modes value at large R0.

|Â0|2. Alternatively, the description of the barrier region can be improved by taking

an additional symmetric Gaussian basis function, �1, which would satisfy the permu-

tational symmetry. Then, the ground-state energy can be obtained by diagonalizing

a ’minimalistic’ Hamiltonian matrix defined by the basis {�s, �1}, where �s is the

symmetrized local ground state wavefunction. The parameters in the added basis

function can be determined variationally. In the future we will explore these options

of boosting the numerical e�ciency and estimate the exchange e�ect in solid 4He.

As a general conclusion, the Pauli potential is an artifact of the single-particle

wavefunction representation or use of other low-dimensional functions such as the re-

duced density to describe the many-body system. If a full-dimensional wavefunction

is available, incorporation of symmetry is cost-e�ective in calculations of the lowest

energy states using the imaginary-time dynamics or other methods. The real-time
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dynamics with friction converges to the ground energy state of the appropriate sym-

metry. Estimation of the symmetry e�ect for the ground state energy can be made

using the ’nonclassical’ momentum, r = Â≠1ÒÂ, available from the approximate

QT dynamics. Other dynamics approaches (including the imaginary-time evolution)

yielding a full-dimensional time-dependent wavefunction could be used to define r as

well.

5.6 Approximation to the non-classical momentum

In the QT dynamics formulation of the TDSE all quantum-mechanical e�ects are

generated by the quantum potential U (Eq. (5.6)), which being inversely proportional

on the particle mass, can be viewed as a correction to the classical dynamics of the

nuclei. For a practical high-dimensional implementation in this regime, U is computed

approximately from a global Least Squares Fit of the nonclassical momentum (Eq.

5.33)) [30, 31], which is exact for harmonic systems. The fitting in terms of monomials

in x have been used to study QM behavior of a proton in an enzymatic environment

and interacting with a carbon flake [25? ]. For strongly anharmonic systems the non-

linear approximation has been developed allowing better balance of the classical and

quantum forces [? ]. We briefly review this non-linear approximation since the fitting

coe�cients are used to estimate the symmetrization e�ects as well as the quantum

e�ects on dynamics. The components of the non-classical momentum are evolved

along each QT according to

r–

dt
= ≠

Q

a
ÿ

—

Ò–p—

m—
r— +

ÿ

—

Ò–Ò—p—

2m—

R

b , (5.62)

with the gradients in the RHS found approximately in a two-step fitting procedure:

1. Minimize Ir = Èq
–(r–(x, t) ≠ r̃–(x, t))2Í and Ip = Èq

–(p–(x, t) ≠ p̃–(x, t))2Í

expanding r̃ and p̃ with a global linear basis f = (1, x).
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2. Fit the residual for each atom or DOF, Ir
– = È(r–(x, t) ≠ r̃–(x, t) ≠ ˜̃r–(x, t))2Í

and Ip
– = È(p–(x, t) ≠ p̃–(x, t) ≠ ˜̃p–(x, t))2Í using a higher-order basis, for in-

stance, the cubic polynomials f– = (1, x–, x2
–, x3

–). This second step leads to a

more flexible quantum force under the assumption that the correlation between

the particles of DOFs (or group of particles/DOFs) is captured by the linear

terms.

The analytical fitting functions for r– and p– are used to compute corrections due to

symmetry in terms of Qij = ln ‰ij,

Ò–Qij = Ò‰ij

‰ij
= P̂ijr– ≠ r– (5.63)

to obtain the analytical expression for Qij(x) as we have an approximated analytical

wavefunction for Â up to a normalization constant.

5.7 Implementation with periodic boundary conditions

For large quantum systems, such as solid 4He, the general setup of computing the

exchange corrections is as follows. The potential is a sum of pairwise interactions,

V = 1
2

ÿ

i,j ”=i

Vij(Rij), Rij = |Rj ≠ Ri|, (5.64)

where Rij is the distance between the atoms i and j. For periodic condensed phase

systems the periodic boundary conditions (PBC) is usually employed. After the

simulation cell of length L is defined the PBC is set up by employing the minimum

image convention [54]. For each atom i, the interaction with the atoms j is computed

if the following condition is fulfilled,

Rij = min{|Rj ≠ Ri|, |Rj ≠ Ri ± L/2|} < Rcut

is computed, where Rcut is a cuto� distance defining the interacting radius. The

neighbor list is built for each atom once, at the beginning without updating in the
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dynamics even the distance of two atoms may become larger than Rcut. The general

steps for the complete computation is as follows

1. Set up the periodic boundary potential and compute the neighbor-list.

2. Define an initial wavefunction as the product of Gaussian wavefunctions in

terms of QTs.

3. Perform dissipative QT dynamics for a predefined time interval T .

4. Output all fitting coe�cients in the last time step. If displaced coordinates are

used, perform coordinates transformation to regular Cartesian coordinates as

described in Appendix ??.

5. Estimate the ground state energy including the exchange e�ect using Monte

Carlo. If the estimate if not su�ciently close to the previous value, repeat steps

3 ≠ 5.
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Chapter 6

Quantum-mechanical evolution with Gaussian

bases defined by the quantum trajectories

Development of a general approach to construction of e�cient high-dimensional bases

is an outstanding challenge in quantum dynamics describing large amplitude motion

of molecules and fragments. A number of approaches, proposed over the years, utilize

Gaussian bases whose parameters are somehow – usually by propagating classical tra-

jectories or by solving coupled variational equations – tailored to the shape of a wave-

function evolving in time. In this chapter, we define the time-dependent Gaussian

bases through an ensemble of quantum or Bohmian trajectories, known to provide a

very compact representation of a wavefunction due to conservation of the probability

density associated with each trajectory. While the exact numerical implementation

of the quantum trajectory dynamics itself is generally impractical, these trajectories

are well suited to guide the Gaussian basis functions as illustrated on several model

problems.

6.1 Introduction

Importance of the quantum-mechanical e�ects associated with the nuclei is gaining

recognition in chemistry and physics, as researchers now manipulate matter, light,

electric and magnetic fields at the atomistic level to develop advanced materials and

molecular structures with desired properties. Some examples are quantum sieving,

i. e. hydrogen/deuterium isotope separation, based of the zero-point-energy dif-
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ference, dependence of optoelectronic properties of P3HT/PCBM heterojunction on

the hydrogen/deuterium substitution of the polymer P3HT, proton conductance in

low-dimensional boron nitrides and silicon-based structures.

Quantum-mechanical e�ects are expected to be the most pronounced for light

nuclei at low temperatures when a typical energy of a process is comparable to the

separation between rovibrational energy levels for the nuclei. For a rigorous descrip-

tion, one has to solve the time-dependent Schrödinger equation for the nuclei evolving

on a single or multiple electronic potential energy surfaces. The traditional exact ap-

proaches based on direct-product bases or discrete variable representation (DVR)

of nuclear wavefunctions are practical to systems of 4-5 atoms (about 12 degree of

freedoms) due to exponential scaling of the basis size with dimensionality of a system.

The largest reactive system that has been stuied with a full-dimensional quantum

treatment is a collision of hydrogen and methane [79].

Over the years many e�orts went into the development of more e�cient adap-

tive bases for exact time-evolution methods and of approximate and semiclassical

dynamics methods. The most well-developed exact method balancing computational

cost and accuracy is the multi-configuration time-dependent Hartree method [71],

MCTDH, based on contraction of a general basis to single (or a few) particle func-

tions. This method and its extensions such as multilayer MCTDH [88] have been

very useful and successful in studies of bound high-dimensional molecular systems

with PES of polynomial (in coordinates) form. The variational multi-configuration

Gaussian [91] vMCG version of the MCTDH is most closely related to this work.

For approximated methods employing basis functions, the wavefunction is usually

represented by a linear combination of many stationary or dynamics basis functions.

The evolution of time-dependent parameters (including expansion coe�cients and

also parameters defining the basis function ) can be determined from Dirac-Frenkel

variational principle [? 69]. A full variational approach usually ends up with coupled
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equations for all the time-dependent parameters. Alternatively, one can specify the

motion of part of the parameters and use TDVP for the rest, which can be considered

as variational principle with constraints.

An example will be for Gaussian wavepacket, the central position and momentum

can be associated with classical trajectories in phase space, the remaining parameters

are the linear expansion coe�cients. The idea of using Gaussian functions to repre-

sent nuclear time-dependent wavefunctions in chemistry goes back to Heller [50, 52].

On the one hand Gaussian functions exactly describe evolution of an initially Gaus-

sian wavefunction (or wavepacket) in a time-dependent parabolic potential, which is

a highly useful model of molecular vibrations. On the other hand GWP dynamics is

easily connected to classical mechanics, which is adequate to describe nuclear motion

in many situations and is widely used to simulate molecular systems: in a parabolic

potential the center of the GWP moves classically. Finally, Gaussian functions are

convenient to work with in numerical implementation, because many integrals can be

performed analytically. While using a single Gaussian to approximate a wavefunction

has an obvious limitation – a Gaussian is a localized wavefunction and thus cannot

describe a process involving bifurcation of the probability density, the idea of using

multiple Gaussians to represent a wavefunction have been used to develop a number

of exact and approximate methods. Some of the exact methods are coupled coherent

Gaussians [82, 77] with the GWP moving along the classical or multiple Ehrenfest tra-

jectories, matching pursuit [92] with GWPs found through a re-expansion procedure,

ab initio multiple spawning (AIMS) [55] for non-adiabatic dynamics based on clas-

sically evolving position and momentum of the Gaussian centers and vMCG, where

Gaussian parameters are determined variationally. The latter has the advantage of

rigorously conserving the wavefunction energy, but the resulting coupled equations

are very tedious to implement numerically and the Gaussian parameters loose their

physical meaning, compared to the GWPs centered on classical trajectories. In the
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area of semiclassical Gaussian-based dynamics the thawed and frozen Gaussians and

the initial value representation Herman-Kluk method [53, 58] are the most popular.

One important conclusion emerging from the semiclassical work is: while a single

thawed Gaussian, i. e. a Gaussian with the complex time-dependent width param-

eter, is an exact general solution of the quantum harmonic oscillator model, use of

multiple thawed Gaussians in a basis representation of a wavefunction is numerically

tedious and unstable. Thus, in our approach described below, we limit ourselves to

the ’frozen’ Gaussian basis of constant-in-time width. We note at this point, that

in the area of time-independent rovibrational calculations, it has been demonstrated

that Gaussian bases whose width parameters have been adapted to the potential can

be very e�cient [24]. Therefore, in the context of time-dependent bases, a middle

ground between frozen and thawed Gaussian bases may be found. However, this line

of research is not part this work.

Generally speaking, the problem of using stationary basis for dynamics is similar to

the grid-based methods that the entire configuration space of polyatomic system has

to be covered, which leads to exponential scaling problem. The time-dependent basis

approach reduce the redundancy of the static basis, thus avoiding the exponential

scaling problem. However, the problem of this is that the energy is usually not

conserved through dynamics while it is always conserved while using static basis.

The energy is only conserved when employing a full variational treatment without

specifying the equations of motion for any parameters or in a complete basis, which

is seldom achieved in practice. And also severe numerical problem (basically the

ill-conditioning of the overlap matrix) can arise due to the linear dependence of the

basis functions. This problem is discussed and some methods have been proposed in

literature [? ].

Besides methods using basis functions, various researchers[3, 95, 26, 27] have taken

a di�erent route to solve TDSE in the framework of de Broglie-Bohm mechanics
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[7, 8]. In this theory, the wavefunction is represented by an ensemble of quantum

trajectories, which is evolved under the classical force together with so-called quantum

force. The motion of quantum trajectories represents the flow of probability. The

challenge in these methods is the computation of quantum force,

U = ≠ ~2

2m
|Â|≠1Ò2|Â|, (6.1)

which can be extremely complicated while the wavefunction has singular points and

ripples.

Here, we propose a method which combines the two approaches and test it with

several one-dimensional and two-dimensional models. We use the time-dependent

Gaussian wavepacket to represent the wavefunction and the motion of the central

position is guided by quantum trajectories. The main advantage of the proposed

method is the capability to treat quantum-mechanical tunneling, which is di�cult if

using classical trajectory guided GWP or Ehrenfest type average. Also due to the

nature of quantum trajectories, the basis is always evolved in the region where the

density is non-negligible.

6.2 Formalism

Atomic units is used if not stated explicitly. One possible way to solve time-dependent

Schrödinger equation (TDSE) is to use time-dependent variational principle with a

set of basis functions „k(t), k = 1, . . . , Nb, characterized by a set of time-dependent

parameters zkµ(t), n = 1, . . . , Np, where Nb is the number of basis used to represent

the wavefunction and Np is the number of parameters for each basis.

zkµ labels the µ-th parameter in k-th basis. Normalization of the wavepacket is

conserved in the course of dynamics.

The wavefunction at any time can be projected onto the subspace spanned the
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set of basis as

Â(x, t) =
N

bÿ

k=1
ck(t)„k(t), (6.2)

where ck are the expansion coe�cient. Assume the basis functions have no explicit

time-dependence but instead depend on the time-dependent parameters,

„k(t) © „(zkµ(t), µ = 1, . . . , Np). (6.3)

Thus take the derivative with time of the last equation yields

„̇k =
ÿ

µ

żkµ
ˆ„k

ˆzkµ
. (6.4)

Substitute Eq. (6.2) into TDSE and assume the equations of motion for the param-

eters characterizing the basis function has been pre-determined yields

ı~
ÿ

k

A

ċk(t) |„kÍ +
ÿ

µ

ck(t)żkµ

-----
ˆ„k

ˆzkµ

LB

=
ÿ

k

ck(t)Ĥ |„kÍ (6.5)

Multiply both sides by È„j| yields

ıMċ = (H ≠ ıD)c, (6.6)

where

Mmn = È„m | „nÍ , Dmn =
K

„m

-----
ÿ

µ

żmµ

-----
ˆ„n

ˆznµ

L

(6.7)

and H is the hamiltonian matrix,

Hmn = Kmn + Vmn, (6.8)

Kmn =
K

„m

-----
ÿ

k

≠ ~2

2m

ˆ2

ˆx2
k

----- „n

L

, Vmn = È„m | V (x) | „nÍ . (6.9)

This is the general equation to solve TDSE with basis sets characterized by time-

dependent parameters.

Eq. 6.6 together with the pre-determined equations of motion for the parameters

can completely solve the TDSE under the variational approximation.

Since the concept of quantum trajectory is going to be used in specifying the

equations of motion for the parameters, we will briefly review the de Broglie-Bohm

mechanics where it is defined.
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Bohmian mechanics

In de Broglie-Bohm theory, the wavefunction is represented in polar form with the

amplitude A(x, t) and phase S(x, t), which are both real functions of x and t,

Â(x, t) = A(x, t) exp
3

ı

~S(x, t)
4

. (6.10)

The probability density can be represented by

fl(x, t) = Âú(x, t)Â(x, t) = A2(x, t). (6.11)

Substituting Eq. (6.10) into TDSE, one obtains two coupled equations of ampli-

tude and phase,

ˆS(x, t)
ˆt

= ÒS(x, t)2

2m
≠ V (x) ≠ U(x, t), (6.12)

ˆfl(x, t)
ˆt

= ≠Ò
A

fl(x, t)ÒS

m

B

, (6.13)

(6.14)

where

U(x, t) = ≠ ~2

2m

Ò2A(x, t)
A(x, t) . (6.15)

U(x, t) is the so-called non-local time-dependent quantum potential, and is propor-

tional to ~2. Without loss of generality, we assume the mass m is the same for each

DoF.

Eq. (6.12) is the Eulerian version of the quantum Hamiltion-Jacobi equation,

di�ering from classical Hamilton-Jacobi equation by the quantum potential term.

The wavefunction can be discretized in coordinate space by quantum trajectories

(QTs) with position x and momentum p, defined as

p = ÒS, (6.16)
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where Ò here represents a column vector of di�erential operator,

Ò =

S

WWWWWWWWWWU

ˆx1

ˆx2

...

ˆx
N

dim

T

XXXXXXXXXXV

, (6.17)

where Ndim is the number of DoF.

Substitute the velocity v = p
m into 6.13 yeilds

ˆfl

ˆt
+ Ò · (flv) = 0, (6.18)

which turns out to be the continuity equation for the probability density.

When ~ æ 0, U becomes negligible and all of the trajectories become indepen-

dent of each other, which corresponds to the classical limit. The ensemble of quantum

trajectories, representing the wavefunction, are assigned certain weights wi, that de-

pends on the initial probability density and the volume element associated with each

trajectory,

wi(t) = Âú(xi, t)Â(xi, t) dxi(t) (6.19)

Space of non-negligible density is su�ciently sampled with trajectories, let Ntraj

be the number of trajectories. The normalization of the probability correspond to

the following relationship
N

trajÿ

i

wi ¥
⁄ +Œ

≠Œ
Âú(x, t)Â(x, t)dx = 1. (6.20)

The weight for each quantum trajectory remains constant in the course of dynamics

[30] in the Lagrangian frame-of-reference,

dwi

dt
= 0. (6.21)

The evolution of quantum trajectories is given by Hamilton’s equations of motion,

dxi

dt
= pi

m
, (6.22)

dpi

dt
= ≠Ò (V + U)|x=x

i

. (6.23)
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Here subscript i labels the trajectories. The phase of wavefunction, S(xi, t), is equal

to the action function Si of each trajectory defined (in units of ~) by

dSi

dt
= pi · pi

2m
≠ (V + U)|x=x

i

. (6.24)

The position-dependent observables Ô can be computed from the properties of

each quantum trajectory,

ÈÔÍ =
⁄

dxfl(x, t)O(x) =
N

trajÿ

i

O(xi)wi (6.25)

Frozen Gaussian wavepackets

Despite the numerical advantages of using Gaussian wavepackets, it also has the

property that the uncertainty in position and momentum is exactly equal to ~. The

GWPs are extensively used in semiclassical methods.

A real multi-dimensional Gaussian wavepacket is

gk = 4

Û
detA

fin
exp

A

≠1
2

ÿ

µ‹

(xµ ≠ qkµ(t))Aµ‹(x‹ ≠ qk‹(t)) + ı“k(t)/~
B

. (6.26)

f refers to the number of DOF and the Greek letters µ, ‹ = 1, . . . , f labels the

DOF. The wavefunction is expanded as a linear combination of GWPs with complex

coe�cients ck, k = 1, Nb, Nb is the number of basis function,

Â(x, t) =
ÿ

k

ck(t)gk. (6.27)

For simplicity, assume the matrix Aµ‹ is a diagnol matrix and Aµµ = –µ. The

overlap matrix in the EOM for the coe�cients can be expressed as

Mjk = Ègj|gkÍ = �f
µ=1 exp

3
≠–µ

4 (qjµ ≠ qkµ)2
4

exp (ı(“k ≠ “j)/~) . (6.28)

We drop the explicit time-depdendence of the parameters characterizing the wave-

function for notational simplicity.

For numerical e�ciency, here we use the forzen Gaussian approximation , i.e., Aµ‹

is a constant matrix.
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We asssocaite the phase term S(t) to the action function of the trajectory, i.e.

“̇k =
ÿ

µ

p2
kµ

2mµ
≠ V (q). (6.29)

This term is not a�ecting the dynamics, since it can be absorbed in the complex

coe�cients.

Instead of using classical trajectories for the center of GWP or using time-dependent

variational principle to obtain EOM, we adopt the EOM for quantum trajectory,

which is

q̇kµ = ˆµS

mµ
. (6.30)

The matrix element for kinetic energy operator is given by

Kjk =
ÿ

µ

–µ

4mµ
(1 ≠ –

2
1
(qjµ ≠ qkµ)2

2
Mjk. (6.31)

Taylor expand the potential energy at the center of two Gaussian basis q̄ =
1
2(qj + qk) yields

V = V0(q̄) +
ÿ

µ

ˆuV (q̄)(xµ ≠ q̄µ) + 1
2

ÿ

µ‹

ˆµˆ‹V (q̄)(xµ ≠ q̄µ)(x‹ ≠ q̄‹) + · · · (6.32)

Thus the matrix element of potential energy turns out to be

Vjk =
A

V0 +
ÿ

µ

ˆ2
µV

4–µ

B

Mjk (6.33)

And also

Djk = Ègj | ≠ıˆt | gkÍ =
ÿ

µ

ı
–µ

2mµ
pkµ(qkµ ≠ qjµ)Mjk (6.34)

Thus the methods start with a sampling of intial configurations (trajectories), obtain

the expansion coe�cients by minimizing the error with chosen intial wavefunction

and compute the spacial derivative of the phase of the wavefunction, the following

is simply numerically integrating the coupled equations of motion for the coe�cients

and quantum trajectories. All the matrix elements with Gaussian wavepacket as basis

which is needed to propagte the EOM has been given in this section.
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Gaussian integrals

Computing the matrix element mainly involves Gaussian integrals, here we derive

some useful Gaussian integrals. Assume

|zkÍ =
3

“k

fi

41/4
e≠ “

2 (x≠q
k

)2+ıp
k

(x≠q
k

)/~ (6.35)

Define

�q = qk ≠ qj, �p = pk ≠ pj

thus

Èzj|zkÍ = (“j“k)1/4
A

2
“j + “k

B1/2

exp
A

≠ “j“k

2(“j + “k)

A
�2p

“j“k
+ �2q + 2ı

A
pk

“k
+ pj

“j

B

�q

BB

The expression can be simplified while “j = “k.

Èzj|(x ≠ qk)n|zkÍ =
K

zj

------

Q

a~
ı

�
ˆ

ˆpk

R

b
n ------

zk

L

(6.36)

Èzj|(x ≠ qj)n|zkÍ =
K

zj

------

Q

aı~
�
ˆ

ˆpj

R

b
n ------

zk

L

(6.37)

6.3 Numerical implementation

One of the numerical di�cuties for this method is the overlap matrix can be ill-

conditioned when two GWPs get too close. One of the properties of quantum trajec-

tories is that they will never cross, the exact quantum force tends to prevent them

from crossing.

In principle, the momentum computed from the wavefunction will have the exact

same e�ects, from a practical point of view, the quantum trajectories will ocationaly

cross, which renders the overlap matrix M ill-conditioned, causing a severe numerical

problem as one has to inverse the overlap matrix while integrating the EOM.

To resolve this problem, a resampling method is used.

96



www.manaraa.com

After propagating the wavefunction for certain time interval T , in order to avoid

the singularity of the overlap matrix of GWP caused by unphysical behavior of quan-

tum trajectories, we resample all the quantum trajectories under the current wave-

function.

The purpose of the resampling is to put GWP to where the wavefunction stays

and reduce the redundant basis where the probability is negligible and add more basis

where the wavefunction become spread out in space.

The first step of resampling is to decide the new set of parameters characterizing

GWP {xÕ, pÕ, cÕ} and decide the number of basis to describe the wavefunction.

A simple way to accomplish this is to start with an initial point x0, at the very

left, and compute the density at this point numerically, |Â(x0, t)|2 = | q
k ckgk(x0)|2.

Define a threshhold ‘, if |Â(x0, t)|2 < ‘, disregard the point, otherwise take the

position as the center of a GWP which will be included in the new basis set. Move to

the right by an interval �x and repeat the last step until we get to the region where

the density is negligible.

The number of basis decided by this procedure N Õ can be di�erent from the one

used in previous propagation. The advantage of this is that we have the flexibility to

add or remove the number of basis. For instance, at the beginning, we may not need

many basis functions to describe the wavefunction, when the wavefunction bifurcates,

we may need more basis.

After we have all the postions for the new basis set, the momentum is computed

by di�erentiating the phase of wavefuncion, pÕ
k = ˆS

ˆx

---
x=xÕ

k

. We can reset “Õ
k = 0, since

the number can be absorbed in the new expansion coe�cients, which are decided by

minimizing the error between the new wavefuction constructed by the new basis can

the old wavefunction,

I = ||
ÿ

k

cÕ
kgÕ

k ≠ Â(x, t)||2.

The minimization yields
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M ÕcÕ = bÕ, (6.38)

where

M Õ
jk = ÈgÕ

j|gÕ
kÍ , bÕ

k = ÈgÕ
k|Â(x, t)Í . (6.39)

Integration scheme

Another di�culty comes from the integration scheme. A first-order Euler method

c(t + �t) = c(t) + �tċ(t), x(t + �t) = x(t) + �tẋ(t), (6.40)

causes numerical instabilities at long time. One has to use a extremely small time

step to make the numerical integration practical and energy bound within certain

range.

Instead we adopts the second-order di�erencing (SOD) scheme, which makes the

integration more stable,

ċ(t) ¥ c(t + �t) ≠ c(t ≠ �t)
2�t

, ẋ(t) ¥ x(t + �t) ≠ x(t ≠ �t)
2�t

(6.41)

Thus

c(t + �t) = c(t ≠ �t) + 2�tċ(t), x(t + �t) = x(t ≠ �t) + 2�tẋ(t) (6.42)

The advantages of using SOD is discussed in detail by Leforestier et al [60].

Momentum convolution

To smooth out the momentum obtained from the spaial derivative of phase of the

wavefunction, we use a Gaussian convolution

Â(x) = lim
—æŒ

A
—

2fi

B1/2 ⁄ Œ

≠Œ
e≠ —

2 (x≠y)2
Â(y) dy (6.43)
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Here we use the relationship

”(x ≠ y) = lim
—æŒ

A
—

2fi

B1/2

e≠ —

2 (x≠y)2
.

Consider a one-dimensional case,

Â(t) =
ÿ

k

ck(t)gk (6.44)

and using the Gaussian integral
A

—

2fi

B1/2 ⁄ Œ

≠Œ
e≠ —

2 (x≠y)2
e≠ –

2 (y≠q
k

)2
dy =

Û
—

– + —
exp

A

≠1
2

–—

– + —
(x ≠ qk)2

B

And the momentum will thus become

p = ÒS = ⁄Â≠1ÒÂ = ⁄Â≠1
A

—

fi

B1/4 ⁄ Œ

≠Œ
(≠—(x ≠ y))e≠ —

2 (x≠y)2
Â(y) dy (6.45)

Let — be a finite number will smooth out the momentum at the center of GWP

basis. Note that when — æ 0, all the momentum will become the averaged value,

which is similar to Erhenfest approximation. When — æ Œ, the convolution has no

e�ect on the obtained momentum.

6.4 Models

Various types of model systems including Morse oscillator representing the vibration

of H2 and double-well system and double-well coupled with a harmonic oscillator will

be tested with this method, obtained results will be compared with exact quantum-

mechanical results using split-operator method [59].

Morse oscilator

The first model is the Morse oscillator representing the vibration of H2, which is a

typical anharmonic potential.

V (x) = d (1 ≠ exp(≠a(x ≠ x0)))2 (6.46)

99



www.manaraa.com

1 2
Position [a.u.] 

0

0.5

1

1.5

2

2.5

3

|ψ(t)|
2
, GWP

|ψ(t)|
2
, QM

Figure 6.1: wavefunction propagation using Gaussian basis and SPO for Mose oscil-
lator at t = 800 a.u..

where d = 0.176 Eh, a = 1.02 a≠1
0 , x0 = 1.4 a0.

Start with a displaced Gaussian wavepacket,

Â0 = 4
Ú

–0
fi

exp
1
≠–0(x ≠ x0)2 + ıp0(x ≠ x0)

2
, (6.47)

where –0 = 9.16 a.u., p0 = 0 a.u., x0 = 1.3 a.u.. 10 GWPs with width parameter

– = 64 is being used in the simulation with a time step �t = 0.2 a.u.. The reduced

mass of H2 is 925 a.u..

To examine the accuracy of the wavefunction in the dynamic process, the auto-

correlation function is also computed,

C(t) = ÈÂ0|e≠ıHt/~|Â0Í =
e
U †(t/2)Â0

--- U †(t/2)Â0
f

= ÈÂ(≠t/2) | Â(t/2)Í . (6.48)

. If initial wavefunction is real, then

Â(≠t/2) = Â†(t/2) (6.49)
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Figure 6.2: Auto-correlation function for Morse oscilator using QT guided GWPs and
SPO (labelled by QM).

thus

C(t) =
⁄ Œ

≠Œ
Â2(t/2) dx. (6.50)

From fig. 6.2, it is clear to see that the autocorrelation computed with GWP basis

is in good agreement with exact auto-corrlation function. And we do not encounter

the ill-conditioning problem of the overlap matrix for this model, thus the resampling

scheme is not being used in this case.

Double well

Double well system is usually encountered in the reaction of hydrogen or electron

transfer, where quantum-mechanical tunneling e�ects play significant roles. Deep

tunneling e�ects cannot be described by classical trajectories as they do not have
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enough energy to go across the barrier. Quantum trajectories, representing the flow

of probability, can describe the tunneling e�ects even though they do not have enough

energy at initial time moment. The quantum potential makes the quantum trajecto-

ries correlated with each other, thus the energy for each individual trajectory is not

conversed. Thus some trajectories will gain enough energy to go over the barrier.

Here we choose a potential from Wu and Batista [92], which is a model system to

simulate electron tunneling between disjoint classical allowed region.

V (x) = 1
16÷

x4 ≠ 1
2x2, (6.51)

where ÷ = 1.3544 a.u..

A local barrier is located at x = 0 with barrier height Vb = 1.3544 a.u..

We choose the initial wavefunction as a Gaussian wavepacket sitting in the left

well,

Â0 = 4
Ú

–0
fi

exp
1
≠–0(x ≠ x0)2 + ıp0(x ≠ x0)

2
. (6.52)

where –0 = 0.5, x0 = ≠2.5, p0 = 0. The mass is set to m = 1 a.u.. The initial energy

for this wavefunction is E0 = 0.9318 a.u., which is about 68% of the barrier height.

The feature of this model is the wide barrier width, the distance between two local

minima is around 4.7 a.u., which causes di�culty for semiclassical methods [92].

10 GWPs with width parameter – = 16 are used for the simulation and time step

is set to 10≠3 a.u..

We examine the wavefunction while the tunneling happens. Fig. 6.3 shows the

wavefunction at t = 3 a.u.. The results obtained with GWP is in good agreement

with exact quantum mechanical result.

To further examine the accuracy of the wavefunction, Fig. 6.4 shows the auto-

correlation function, very good agreement with exact quantum-mechanical results is

achieved.
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Figure 6.3: Wavefunction for double well using QT guided GWPs and SPO (labelled
by QM) at t = 3 a.u.. Part of the wavefunction tunnels through th barrier located
at x = 0. The green dot-dashed curve is the rescaled and shifted potential.

Two-dimensional double well system

The last model is a double-well system coupled with a harmonic oscillator, which

is typical for reactive dynamics in condensed phase. This model is being used by

Garashchuk et al [33] to study coupling between quantum DOF and classical DOF.

The potential is given by

V (x, y) = y2(ay2 ≠ b) + 1
2c(x ≠ y)2 + b2

4a
, (6.53)

and the parameters are set as a = 1, b = 4 c = 4. The particle mass are set to

m1 = m2 = 1 a.u.. Fig. 6.5 shows the contour of the potential energy, two local

minima are located at (≠
Ô

2, ≠
Ô

2), (
Ô

2,
Ô

2). The barrier is located at (0, 0) with

barrier height Eb = 4 Eh. We examine the autocorrelation function starting with a
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Figure 6.4: Autocorrelation function obtained with quantum trajectory guided
GWPs, comparing with exact quantum-mechanical results.

Table 6.1: Parameters for the initial wavefunction used in the 2-dimensional double
well system.

x0 y0 px py –x –y

-1.4 -1.4 0 0 1 1

Gaussian wavefunction sitting in the left well of the potential,

Â0 =
3

–x–y

fi2

41/4
exp

3
≠–x

2 (x ≠ x0)2 ≠ –y

2 (y ≠ y0)2 + ıpx(x ≠ x0) + ıpy(y ≠ y0)
4

.

(6.54)

Parameters for the initial wavefunction is listed in Tab. 6.1. The dynamics is simu-

lated with 10 ◊ 10 Gaussian wavepacket with time step �t = 10≠3 a.u..

The eigenfrequency ‹n © E
n

2fi~ can be obtained by Fourier transforming the auto-

correlation function. The resolution of the frequency is limited by the length of the

signal. To avoid this problem , here we use the harmonic inversion method [66].
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Figure 6.5: Contour plot of the two-dimensional potential. Two local minima are
located at (≠

Ô
2, ≠

Ô
2), (

Ô
2,

Ô
2).

Table 6.2 shows the eigenfrequency of the ground and one excited state obtained

with harmonic inversion method using the data from GWP and exact quantum-

mechanical result. The simulation is performed with several sets of parameters and

clearly, the results is insensitive to parameters. In practice, the best parameters

is determined by the model and initial wavefunction. The obtained energies is in

good agreement which is expected since the accuracy depends on the quality of the

autocorrelation function.
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Figure 6.6: autocorrelation function computed with chosen initial wavefunction.
Comparison is made with exact quantum-mechanical results.

Table 6.2: Eigenfrequency of the ground and one excited states in atomic units ob-
tained from harmonic inversion method.

GWP1 GWP2 GWP3 QM
‹g 0.4827 0.4822 0.4830 0.4829
‹e 0.7110 0.7180 0.7209 0.7163
1 10 ◊ 10 GWPs with – = 16
2 12 ◊ 12 GWPs with – = 16
2 16 ◊ 16 GWPs with – = 32
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6.5 Discussions

The proposed method takes advantage of the idea of quantum trajectories represent-

ing the flow of probability defined in the de Broglie - Bohm mechanics and also the

time-dependent variational principle with Gaussian-type basis. In principle, the pa-

rameters characterizing the GWPs can evolve in an arbitrary way. For instance, one

can define a classical trajectory to evolve the average position and mementum of the

GWP, though the quantum-mechanical tunneling e�ects can not be described in this

way. None of the classical trajectories will have enough energy to cross the barrier if

the initial energy is lower than the barrier as classical trajectories are uncoupled. A

reasonable method has to cover the whole range with non-negligible density through

the dynamic process. Adopting quantum trajectories will let the method be capable

to describe tunneling e�ects. Someone may notice that we may have some redun-

dancy to use the ensemble of quantum trajectories to represent the wavefunction as

well as the Gaussian basis. Notice that by adopting the TDVP, the number of basis

(QTs) that we have to use is 3-4 orders of magnitudes smaller compared to the regular

quantum trajectory methods which is typically of the order of 104.

Strictly speaking, we can not claim that the ensemble of QTs used here represents

the wavefunction, it nevertheless still represents the flow of probability. And that is

what we need is to place the GWPs as the requirement for a variational approximation

to work is that the wavefunction is almost in the space spanned by the basis set.

From the test of various model systems, it is clear that the proposed method can

propagate an arbitrary chosen initial wavefunction accurately for the bound potential

and also systems where the quantum-mechanical tunneling e�ects is significant.
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Chapter 7

Nuclear Quantum Effects on adsorption of

H2/D2 on metal ions

The nuclear quantum e�ects (NQE) on the zero-point energy, influencing adsorption

of H2 and isotopologues on metal ions, are examined from the normal modes anal-

ysis of ab initio electronic structure calculations for 17 metals and from the nuclear

wavepacket dynamics on the ground state electronic potential energy surfaces (PES)

in three dimensions for Li+ and Cu+2. The dynamics-based nalysis incorporates ef-

fects of the PES anharmonicity. The largest e�ects due to the quantum character

of the metallic nuclei are observed for the lighter metals Li and Be. The largest

selectivity in adsorption based on the di�erences of the zero-point energy of H2 and

isotopologues is predicted for Cu, Ni and Co ions. The estimates of NQEs involving

dynamics of H2 in Cartesian coordinates is extendable to the metals embedded into

molecular environments such as those of metal-organic frameworks.

7.1 Introduction

The separation of hydrogen isotopologues, such as D2, HD, H2 and variants is a

significant research target in the nuclear industry.1,2 Deuterium (D), a stable non-

radioactive isotope of hydrogen, famous for its excellent neutron moderating prop-

erties. Moreover, deuterium is of great importance due to its wide applications in a

medical treatment and a detection as a tracer element.

In nature, deuterium occurs with an average abundance of 0.015 % of the total
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amount of hydrogen in the oceans, while the most common hydrogen isotope (H)

accounts for more than 99.98 %. Due to its rarity, deuterium exists in the form of

HDO, or the mono-deuterated water molecule. Such low deuterium abundance makes

its industrial harvesting a challenging job. Luckily, deuterium is twice heavier than

hydrogen and can be e�ciently separated based on the mass di�erence. The most

common industrial deuterium enrichment processes are the electrolysis, distillation,

chemical exchange and Girdler-Sulphide. These processes are strait forward subject

but the extremely rare deuterium abundance makes its separation quite expensive.

It has been suggested by Beenakker et al. that hydrogen isotopologues can be

e�ciently 5separated with nanoporous materials. Beenakker et al. purposed the

Kinetic Quantum Sieving (KQS) method that occurs in the ultra-porous materials.5

The KQS is the most pronounced when the di�erence between a pore and molecular

diameter is not much larger than the de Broglie wavelength of a molecule. Quantum

sieving method appears to be the most e�cient at a 6relatively low temperature,

nearly cryogenic, when the quantum e�ects are the strongest. KQS method is only

possible in the ultra-porous materials with the strict geometrical criteria and only

few porous materials can satisfy its criteria.

In a di�erent separation mechanism, called Chemical A�nity Quantum Sieving

(CAQS), strongly attractive centers of porous materials may adsorb preferentially

heavy isotopologues due to their smaller zero-point energy, resulting in a stronger

adsorption enthalpy. This method is maximized by strong adsorption centers, which

allow high selectivity at high temperatures (100K and above), and is more appro-

priate for the rational design of porous materials for e�cient hydrogen isotopologues

separation. Specifically, MOFs with open metal centers is an example of such mate-

rials, and we will examine the nuclear quantum e�ects underlying CAQS for a set of

metal centers binding H2 and its isotopologues.
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7.2 Nuclear Quantum Effects for MeH2: the normal mode analysis

The electronic energy for MeH2 ions is sensitive to the quality of the ab initio method.

Since for comparison of the ZPEs we need to obtain the electronic potential energy

surfaces of high accuracy, after trying DFT and MP2 methods, we use CCSD with

G3MP2Large basis for all atoms [18] for the geometry optimization and normal modes

analysis. For the quantum nuclear dynamics calculations of Section 7.3 we use the

same theory level for the full PES construction of Li+H2 and a slightly smaller ba-

sis CCSD/G3Large for the PES construction of Cu+2H2. The electronic structure

calculations are performed with Q-Chem4.3 [? ].

The NQE within the normal modes analysis is performed for MeH2, MeHD and

MeD2 where Me represents the following metal ions: Me={Li+, Na+, K+, Be+, Mg+,

Ca+, Be+2, Mg+2, Ca+2, B+, Al+, Co+, Ni+, Cu+, Co+2, Ni+2, Cu+2}. For the tran-

sition metal centers Co, Ni and Cu several spin multiplicities have been considered.

To assess the importance of the quantum behavior of the metal ions we have also

computed the ZPE for the triatomics assuming unphysically large mass of the metal,

mMe = 106 a.m.u. The optimal geometries and of the MeH2 triatomics and all the

ZPEs are summarized in Table 7.1 and the main trends are shown in Figs 7.1–7.3.

Binding of H2 to the metal center changes the ZPE which roughly correlates to the

H-H distance (Fig. 7.1). The change in the ZPE compared to the free H2 is in the

range from 0.5-2.5 kcal/mol while the H-H is stretched up to 8% compared to the

free H2 value.

To assess contribution of the metal center to the ZPE, the ZPE has been also

computed for the infinitely heavy Me ion bound to H2 (labeled as ’HH*’ in Table

7.1). The largest changes between these two ZPE values, indicating more ’quantum’

character of the metal center, are found as expected for the lighter metal ions, namely

Be+2, Li+, Be+ (Fig. 7.2). The di�erence for these species is 0.176, 0.086 and 0.088

kcal/mol respectively. Smaller changes in the ZPE indicate less ’quantum’ character
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the metal nuclei, such as the fourth row metals. The di�erence for Cu+2 is 0.023

kcal/mol.

The adsorption selectivity is determined by the di�erence between the ZPE for

MeH2 and MeD2, � = ZPE(MeH2) ≠ ZPE(MeD2) shown in Fig. 7.3. The largest

� is found for the transition metals (2.33-2.48 kcal/mol) followed by Li and Be

metal centers (2.22-2.29 kcal/mol) which are also the most ’quantum’ metal centers.

Therefore, a more detailed dynamics study of the NQE is performed for one of the

most quantum system, Li+H2, and for one of the most ’selective’ systems, Cu+2H2.
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Figure 7.1: The ZPE of MeH2 ions relative to the ZPE of H2 molecule as a function
of the HH distance. The vertical lines match the metal ions of the legend.

7.3 Nuclear Quantum Effects for MeH2: nuclear dynamics

To go beyond the normal mode analysis and allow for the anharmonicity of PES,

we have used quantum nuclear dynamics to obtain the ground states and selected
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Table 7.1: Geometry and ZPE for Me-H2 trimers and H/D isotopologues. The last ZPE column (HH*) is the value for an
infinitely heavy metal. The column � lists the di�erence in ZPE of H2 bound to the metal center of the main isotope mass and
to the infinitely heavy metal. a CCSD/G3Large method used for the PES. b H2 and isotopologues without the metal center.

Metal Geometry ZPE [kcal/mol] Ion
mass Me Me-H [Å] H-H [Å] \ HHMe¶ HH HD DD HH* � Charge S2

3 Li 2.036724 0.750560 79.382302 7.783 6.749 5.560 7.697 0.086 1 0
11 Na 2.424159 0.747456 81.131565 7.447 6.442 5.282 7.426 0.021 1 0
19 K 2.948414 0.744928 82.742672 7.100 6.142 5.028 7.092 0.008 1 0
4 Be 1.838459 0.767759 77.947716 7.763 6.729 5.549 7.675 0.178 1
12 Mg 2.664742 0.749134 81.919707 7.046 6.097 4.992 7.033 0.046 1
20 Ca 3.380715 0.745043 83.673734 6.792 5.879 4.807 6.789 0.019 1
4 Be 1.620057 0.814619 75.438643 8.216 7.134 5.927 8.038 0.088 2 0.75
12 Mg 2.045225 0.775584 79.070068 7.908 6.837 5.626 7.862 0.013 2
20 Ca 2.463211 0.758228 81.146383 7.628 6.593 5.409 7.609 0.003 2
5 B 2.353029 0.753443 80.787395 7.201 6.236 5.119 7.163 0.038 1
13 Al 3.076253 0.745984 83.035945 6.974 6.035 4.940 6.965 0.009 1
27 Co 1.888585 0.795679 77.856330 8.008 6.910 5.681 7.985 0.022 2 1.7402
28 Ni 1.840668 0.800639 77.438592 8.080 6.971 5.733 8.055 0.022 2 2.0034
29 Cu 1.794757 0.811681 76.931183 8.044 6.937 5.707 8.019 0.019 2
27 Co 1.743300 0.783037 77.022365 8.524 7.352 6.046 8.502 0.023 1 2.0080
28 Ni 1.735737 0.780840 77.001842 8.539 7.365 6.056 8.517 0.025 1 0.75
29 Cu 1.774239 0.775827 77.371155 8.299 7.161 5.884 8.280 0.025 1
a29 Cu 1.812126 0.809082 77.100660 8.022 6.920 5.693 7.997 2 0.7512
b free 0.742119 6.306 5.462 4.461 1
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the ZPE of MeH2 species with the ZPE computed for infinitely heavy metal ion as a
function of the ZPE. The vertical lines match the metal ions of the legend.

excited energy levels. Analysis of the free non-rotating H2 whose PES is fitted with

the Morse potential [75] shows that the anharmonicity of the H2 vibration, ÷V =

(E1 ≠ E0)/(2E0) ≠ 1 is close to 10%. The anharmonicity parameter of the Morse

potential for H2 is ‰ © Ê/(4D) = 0.04, where Ê is the harmonic frequency and D

is the well-depth. Our of triatomics two metal ions are considered for the dynamics

investigation: Li+H2 and Cu+2H2 with H/D substitution. The former species will have

the most pronounced NQE associated with the metal nucleus. The latter species is

expected to have the largest selectivity in H2/D2 adsorption.
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Li+H2

Li+H2 is the smallest triatomic from our set of Section 7.2, with just four elec-

trons, with the ’most quantum’ metal nucleus. Therefore, we construct a high-

quality analytical PES for this system. A grid of ab initio points computed at the

CCSD/G3MP2Large level is used to construct a spline-based analytical PES.

All three nuclei are treated as QM particles described in the Jacobi coordinates

(R, r, ◊) [? ] and the molecule is non-rotating. The distances are described on an

equidistant grid and the Discrete Variable Representation is used for the angle [62].

The ground state energy and a few low-lying excited energy levels are obtained

from the Fourier transform of the autocorrelation function C(t) of a wavefunction

Â0, C(t) = ÈÂ0|ÂtÍ. The wavefunction is evolved in real time using the split operator
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propagator and Fast Fourier Transform [59, 21]. The propagation parameters are

given in Table 7.2. The initial wavefunction Â0 is set as a product of Gaussian

functions in R and r, and the angular dependence is introduced to ensure that the

initial wavefunction overlaps with the first few exited states:

Âreal
0 (R, r, ◊) = sin2 ◊e≠–(R≠R

e

)2≠—(r≠r
e

)2
. (7.1)

Table 7.2: Simulation parameters for the Li+H2 system. Nt is the number of time-
steps dt taken. N◊ is the number of the angle DVR points.

Propagation Nt dt [a.u.] – [a≠2
0 ] — [a≠2

0 ] Re [a0] re [a0] N◊

Real time 30000 2 12 12 3.8 1.40 40

The normal modes vibrational analysis of the CCSD/G3MP2Large calculation

yields three modes shown in Fig. 7.4: the relative translational mode of frequency

477.51 cm≠1; the diatomic rotational mode of frequency 669.54 cm≠1; the diatomic

vibrational mode of frequency 4297.32 cm≠1. The lowest transition frequencies ob-

tained from the Fourier transform of the autocorrelation functions are listed in Table

7.3. Apparently the low excitation states do not involve excitation of the diatomic

vibrational mode.

The anharmonicity can be measured using the di�erence between two lowest ex-

citation transition

÷ = Ê10 ≠ Ê21
Ê10

Here Êmn = (Em ≠ En)/~ is the transition frequency between states m and n. For

the harmonic system ÷ = 0. Labeling the relative translational mode as T and the

diatomic rotational mode as R, one can obtain ÷T = 6.8% and ÷R = 7.5%. Our

estimate for the H-H vibration is ÷V = 10%.

Cu+2H2

In case of Cu+2H2, given its large mass and small changes in the normal modes ZPE

as discussed in Section 7.2. we do not treat Cu as the quantum nucleus. The H-H is
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Figure 7.4: The normal modes of Li+H2: relative M-H2 translation (T), H2 rotation
(R) and H2 vibration (V).

Table 7.3: Transition frequencies and corresponding excitation energies.

Transition frequency [cm≠1] Transition Normal mode frequency [cm≠1]
514.8 T: |0Í æ |1Í 477.51
479.6 T: |1Í æ |2Í
737.0 R: |0Í æ |1Í 669.54
682.0 R: |1Í æ |2Í

described using three quantum Cartesian coordinates (x, y, z): the center of H2 fixed

at its equilibrium position with respect to Cu+2 and the H-H vector is defined in three

Cartesian coordinates: x measures the H-H distance and y and z the orientation of

H2 with respect to the metal center. This set up can be used to MeH2 embedded in a

MOF. In the absence of the MOF environment, however, there is cylindrical symmetry

of the PES with respect to rotation along the x-axis, and the z coordinate then is

redundant. The PES is obtained from a six-point two-dimensional interpolation of

the electronic energy values computed on the (x, y) grid x = [≠1.5, 1.5], dx = 0.1 a0

and the same for y. The PES points are obtained using CCSD within the 6-31G*
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Table 7.4: QM dynamics parameters for Cu+2H2. The time-step and the width
parameters are rescaled by the appropriate isotope mass for HD and DD.

Npnts time step final time Grid start
128 0.025 2.5 0.0 -1.575
�x Â0 width [a≠2

0 ] Â0 center [a0]
0.025 6 2 1.53 0.0

Table 7.5: Parameters of the Morse potential fitting ab initio data (CCSD/G3Large)
for H2 stretch and Cu+2H2 stretch.

HH Cu-H
D 0.0991235 0.0714296
a 1.12074 .768744
r0 1.53809 3.34728
xe 0.0415367 0.01678

ZPE Eh 0.0080635 0.002377
EHH

0 [kcal/mol] 5.06 1.49
EHD

0 [kcal/mol] 4.39 1.22
EDD

0 [kcal/mol] 3.60 1.06

Table 7.6: ZPE from the fitting of the wavefunction energy decaying to the ground
state. The last column, ZPEú, lists the normal modes values (CCSD/G3Large).

E0 [Eh] E0 [kcal
mol ] ZPEtr [kcal

mol ] ZPE [kcal
mol ] ZPEú [kcal

mol ]
H2 0.01001 6.28 1.49 7.77 8.02
HD 0.00893 5.61 1.22 6.83 6.92
D2 0.00764 4.80 1.06 5.86 5.69

basis for H and G3Large basis for Cu. The split-operator/Fast Fourier Transform

propagation in imaginary time give estimates of the ZPE for H2 and its isotopologues.

To accelerate convergence of the imaginary time dynamics we add a simple quadratic

potential Vz = kz2/2. To estimate the ground state energy of the triatomic Li+H2

and isotopologues, the ZPE of the separable in z≠coordinate motion is subtracted

and the ZPE of the Morse potential, mimicking the translational motion of H2 bound

to Cu+2, is added. The propagation parameters and the initial wavefunction Â0 are

listed in Table 7.4.

The Morse parameters to the H2 stretch and Cu+2H2 stretch, or H2 translation,

are given in Table 7.5.
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ground state wavefunction for H2, HD and D2 bound to Cu+2. Contours are plotted
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Chapter 8

Conclusion

The take home message is that the quantum e�ects of nuclei such as zero-point en-

ergy, tunneling e�ects can be essential for understanding of chemical processes. This

is supported by some experimental results for water systems and low-temperature

reactions. Exact quantum treatment is scalable to just 4-5 atoms due to exponential

increase of computational resources with the system size. This motivates theoretical

chemists to develop approximations to simplify the computation. Various semiclas-

sical methods are being developed, yet currently there is no widely used general

approach.

The quantum trajectory method developed in our group is based on the de Broglie-

Bohm formulation of quantum mechanics. The state of a quantum system is repre-

sented by an ensemble of quantum trajectories. The equations of motion for these

quantum trajectories di�er from classical equations of motion by an extra potential,

the so-called “quantum potential”. The quantum potential has a simple and ele-

gant mathematical expression, but poses severe numerical challenges if one wants to

compute it exactly.

We have developed the approximate quantum potential (AQP) method and its

extension describing the energy dissipation in a quantum system. This AQP dynamics

with friction was used to obtain the ground state energy and wavefunction of any

quantum system with large anharmonicity. After tests of low-dimensional model

systems, we studied the solid helium 4 modeled with 180 nuclei. The formalism to

estimate the e�ects of quantum statistics and to extract collective modes of motion
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in a large quantum system have been developed.

The interference e�ects are di�cult to describe within the AQP formulation.

Thus, we introduce a new method, the quantum trajectory guided Gaussian bases,

which is a marriage of the basis set representation with the wavefunction and tra-

jectory representation. The set of Gaussian bases is characterized by the centers,

the centers move in the same way as quantum trajectories, yielding a very compact

time-dependent basis, while superposition of Gaussians describes interference. This

approach is used for double well, Eckart barrier and a 2-dimensional double well cou-

pled with harmonic oscillator model systems illustrating the concept for bound and

scattering problem.

Extensions of the approach baed on adaptive-width functions and basis reexpan-

sions are planned for the future.
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Appendix A

Quantum Scattering

Quantum scattering is ubiquitous in chemical dynamics, which can be taken as a

quantum description of the classical colliding model. This phenomenon can be studied

in a time-independent approach which usually involves plane wave for the asymptotic

Hamiltonian and also time-dependent method. Here we focus on time-dependent

method which is more intuitive.

A convenient model which goes beyond the one-dimensional barrier scattering to

understand quantum scattering is atom-diatom collision,

A + BC(‹ = 0) æ AB(‹ Õ = 0, 1, 2) + C, (A.1)

If we assume the initial state has a product form Â(ti) = Â(R)‰r, where R repre-

sents distance from A to the center BC, and r labels the diatomic distance between

BC. For simplicity, we do not consider the angle here. The initial state will involve

under the total Hamiltonian H. At long enough time, the wavefunction Â(t) will be-

come reflective part ÂR and transmitted part ÂT . The transmission part represents

the probability of reaction. If we measure the outgoing atom, which would be atom

A or atom C, the amplitude for a particular event (say atom C has momentum p and

diatom AB is in state ‹ will be Sf = Èp„‹ |Â(t)Í. If we want to know the scattering

probability of a particular initial state „i, then we have to divide the amplitude of

initial wavefunction projected onto „i such that

Sif = „f |Â(t)
È„i|Â(ti)Í
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To get the time-invariant value, we should take the time to infinity thus the

probability of observing that event is

Piæf = lim
t
f

≠t
i

æŒ
| È„f |U(tf , ti)|Â(ti)Í |2/| È„i|Â(ti)Í |2 (A.2)

This quantity should have no dependence of the initial wavefunction and initial time,

thus we have the freedom to choose the initial wavefunction to to time-dependent

quantum dynamics.

A.1 Collinear Reaction

For the purpose of computing S-matrix elements for the three inelastic exchange

reactions,

A + BC(‹ = 0) æ AB(‹ Õ = 0, 1, 2) + C, (A.3)

In the asymptotic region of reactants, labelled by i = 1, initial wavepacket �0,0
in (r1, R1)

is prepared by computing the product between the ‹ = 0 vibrational eigenstate of

the BC diatom, and a Gaussian wave packet,

�0,0
in (r1, R1) = Èr1|0Í

32–R1

fi

41/4
◊ exp[≠–R1(R1 ≠ R0

1)2 + ıpR1(R1 ≠ R0
1)]. (A.4)

In Eq. (A.4), Èr1|0Í is the normalized ground vibrational state of the BC diatom. R0
1

is the initial center of the Gaussian wavepacket in the translational degree of freedom.

Reactant channel packets is constructed from plane waves with negative momen-

tum only, while product channel packets will be constructed from plane waves with

positive momentum. The probability for a reaction of this type described by Eq.

(A.3) is

P‹Õ‹(E) = |S2,‹Õ; 1,‹
+k2 ≠k1| (A.5)

where we have assumed that the reactants are entering from channel 1 and the prod-

ucts are exiting from channel 2. ‹ and ‹ Õ are quantum numbers for vibrational mode
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of BC and AB separately. For a given total energy E, we need to calculate the plane

wave expansion coe�cients ÷(±ki) (i = 1, 2), where i labels the channel and

ki(E) =
Û

2µi

~2 (E ≠ E‹,i), (A.6)

where E‹,i is the vibrational energy of the i-th channel packet and µi is the transla-

tional reduced mass in i-th channel.

µ1 = (mA + mB)mC

mA + mB + mC
, (A.7)

µ2 = mA(mB + mC)
mA + mB + mC

. (A.8)

A.2 Angular momentum

If the reaction is not collinear, the new Jacobi coordinates will be (R, r, ◊), where ◊

is the angle between R and r. The Hamiltonian in (R, r, ◊) for a given J and j = 0

in body-fixed frame is given by

Ĥ = ≠ ~2ˆ2

2µRˆR2 ≠ ~2ˆ2

2µrˆr2 + (J ≠ j)2

2µRR2 + j2

2µrr2 + V (R, r, ◊) (A.9)

where µR is the reduced mass of A with respect to BC and µr is the reduced mass of

BC. J is the total angular momentum and j labels the initial rotational state of BC.

V (R, r, ◊) is the potential energy of the system. The initial wave packet is then chose

as the product of of a Gaussian wave packet, Gk0(R), representing the translational

motion of A with respect to BC, ground ro-vibrational (‹ = 0, j = 0) eigenfunction

„‹j(r) for the diatom and a normalized associated Legendre polynomial P̃jK(cos ◊).

�(R, r, ◊, t = 0) = Gk0(R)„‹j(r)P̃jK(cos ◊) (A.10)

The normalized associated Legendre polynomials

P̃jK(cos(◊)) =
ı̂ıÙ(2j + 1)(j ≠ K)!

2(j + K)! PjK(cos ◊) (A.11)

are eigenfunctions of the j2 operator with eigenvalues j(j + 1)~2.
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Appendix B

Quantum trajectory in imaginary time

The imaginary time quantum dynamics is implemented in Cartesian coordinate using

the momentum-dependent quantum potential approach. Implementation in Cartesian

coordinates is important because it allows one to work with the Hamiltonian of the

simplest form, to setup calculations in the molecular dynamics-compatible frame-

work and to naturally mix quantum and classical description of particles. A nodeless

wavefunction, represented in terms of quantum trajectories, is evolved in imaginary

time according to in the Eulerian frame of reference. The quantum potential and its

gradient are determined approximately from low order (quadratic) polynomial fit to

the trajectory momenta, which makes the approach practical in high dimensions.

B.1 Formalism

The Boltzmann evolution of a wavefunction according to the di�usion equation with

the Hamiltonian Ĥ,

ĤÂ(x, ·) = ≠~ ˆ

ˆ·
Â(x, ·), · > 0 (B.1)

is equivalent to Schrödinger equation with the real time variable t replaced by ≠ı· .

This transformation, the so-called Wick rotation [? ], is widely used staring with

the path integral formulation of statistical mechanics and including , for example,

recent Gaussian-based methods.

As · æ Œ, any initial wavefunction, not orthogonal with ground state wave-

function, propagated in time according to Eq. (B.1) will evolve to the lowest energy

eigenfunction, since the lowest energy component is the slowest to decay. In other
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words, the wavefunction energy E will converge to the ground-state energy, E0,

E(·) = ÈÂ(·)|Ĥ|Â(·)Í
ÈÂ(·)|Â(·)Í , lim

·æŒ
E(·) = E0. (B.2)

The imaginary time evolution can be viewed as “cooling” of a system to the temper-

ature T , where kBT = 1/— = ~/· , kB is the Bolzman constant.

To obtain the classical-like equations of motion, we express a positive wavefunction

via a single exponential function,

Â(x, ·) = exp
A

≠S(x, ·)
~

B

.

Substituting this form of wavefunction into Eq. (??) gives the equivalent of Hamilton-

Jabobi equation,

ˆS(x, ·)
ˆ·

= ≠1
2ÒT SM≠1ÒS + V + ~

2ÒM≠1ÒS. (B.3)

Defining the momentum as p(x, ·) = ÒS(x, ·), the last term in Eq. (B.3) is

interpreted as the momentum-dependent quantum potential (MDQP),

U(x, ·) = ~
2ÒT M≠1p,

responsible for all QM e�ects. It is non-local and influences the dynamics on equal

footing with the external classical potential V . As a consequence, trajectories leave

the region of low potential energy causing under-sampling of the ground state wave-

function at long times in high-dimensional ground-state calculations. Thus, we con-

sider the Eulerian frame of reference where the initial trajectory positions are sta-

tionary random grid points.

The trajectory momentum function at fixed x evolves according to the gradient

of Eq. (B.3),
ˆpµ

ˆ·
= ≠v–Ò–pµ + Òµ(V + U), v– = p–

m–

For practical multidimensional implementation, the first and second derivatives of p

are computed approximately from the global Least-Squares Fit in Taylor basis f ,

f = (1, x1, x2, · · · , x2
1, x2

2, · · · )
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The fitting coe�cients C minimize the di�erence between the exact momenta and its

fit p̃, pµ = qN
b

k=1 fkCkµ,

I = È
ÿ

µ

(pµ ≠ p̃µ)2Í , ÒCI = 0. (B.4)

The optimal values are obtained by solving a matrix equation,

MC = B, (B.5)

where

Mij = Èfi|fjÍ , Bkµ = Èpµ|fkÍ (B.6)

The energy is evaluated over the trajectory ensemble,

E =
ÿ

i

E(x· , p· )e≠2Si

·

/~”xi. (B.7)

Superscript i labels the trajectory-based quantity. The weight, ”x(i), accounts for the

contribution of the ith trajectory to the integration and does not change with time.
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